18 research outputs found

    Consequences of Mycorrhizal Colonization for Piriqueta Morphotypes under Drought Stress

    Get PDF
    Field and greenhouse studies have shown that arbuscular mycorrhizal fungi (AMF) can improve plant growth in environments with restricted water availability. The benefits of AMF symbiosis vary among plant species, but the extent to which AMF-mediated drought tolerance varies among subspecific taxa remains poorly understood. In this study, we examine differences in AMF response among three recently diverged, ecologically heterogeneous plant taxa (morphotypes) within the Piriqueta cistoides spp. caroliniana complex. We performed a greenhouse experiment using cuttings of each morphotype inoculated in field-collected soil to test for inoculum source effects of AMF on plant growth under drought. Correlation between AMF colonization and plant performance under drought was significant for all three morphotypes but was strongest for viridis morphotype; this group is associated with mesic, low-phosphorous soils of south Florida slash pine flatwoods. Compared to inocula obtained from other morphotypes’ regions, the AMF obtained from one of the most arid habitats (caroliniana) promoted an equal or greater amount of growth in host plants despite relatively low levels of root colonization. These findings suggest that both genetic divergence among morphotypes and the source of AMF inoculum affect plant growth under drought in P. c. ssp. caroliniana complex

    Some properties of solutions to polynomial systems of differential equations

    No full text
    In [7] and [8], Parker and Sochacki considered iterative methods for computing the power series solution to fy′=Gcircy{f y' = G circ y} where fG{f G} is a polynomial from mathbbRnmathbb{R}^n to mathbbRnmathbb{R}^n, including truncations of Picard iteration. The authors demonstrated that many ODE's may be transformed into computationally feasible polynomial problems of this type, and the methods generalize to a broad class of initial value PDE's. In this paper we show that the subset of the real analytic functions mathcalAmathcal{A} consisting of functions that are components of the solution to polynomial differential equations is a proper subset of mathcalAmathcal{A} and that it shares the field and near-field structure of mathcalAmathcal{A}, thus making it a proper sub-algebra. Consequences of the algebraic structure are investigated. Using these results we show that the Maclaurin or Taylor series can be generated algebraically for a large class of functions. This finding can be used to generate efficient numerical methods of arbitrary order (accuracy) for initial value ordinary differential equations. Examples to indicate these techniques are presented. Future advances in numerical solutions to initial value ordinary differential equations are indicated

    Root biomass of carbon plantings in agricultural landscapes of southern Australia: Development and testing of allometrics

    No full text
    Root biomass may to contribute a substantial proportion of the carbon sequestered in new tree plantings, particularly in regions where rainfall and/or site quality is relatively low as this may result in relatively high allocation of plant biomass below-ground to source required water or nutrients. However, root biomass is often overlooked because of difficulty with measurement. In Australia, most carbon plantings are currently mixed-species environmental or mallee eucalypt plantings on agricultural land in regions with rainfall of 250-850mmyear-1. Here, we collated new and existing root biomass data from ca. 900 individual trees or shrubs to develop and test allometric equations for predicting root biomass based on stem diameter (of unharvested trees or shrubs) or height (of coppice harvested trees) in these plantings. Equations developed showed significant differences between groupings of species with differing growth habits or from different genera. Grouping species into categories of: (i) non-eucalypts, (ii) tree-form eucalypts, (iii) unharvested mallee eucalypts, and (iv) coppiced mallee eucalypts, provided equations with model efficiencies of 0.64-0.90. In the process of collating data across different studies, corrections were required for data consistency. Uncertainty analysis showed that although these corrections resulted in some uncertainty in the equations developed, measurement errors, particularly of stem diameter, were also important contributors to this uncertainty. We tested equations developed using data from 11 environmental and mallee planting sites where direct measurements of root biomass were made through whole-plot excavation. Site-level predictions of root biomass from individual tree allometry were effective, with an efficiency of prediction of 0.98. These results indicate that the generic allometric equations developed can be confidently applied across the Australian agricultural region with 250-850mmyear-1 rainfall to obtain accurate regional estimates of root biomass in the currently relatively young (<20year old) environmental and mallee plantings

    Testing the generality of below-ground biomass allometry across plant functional types

    Get PDF
    Accurate quantification of below-ground biomass (BGB) of woody vegetation is critical to understanding ecosystem function and potential for climate change mitigation from sequestration of biomass carbon. We compiled 2054 measurements of planted and natural individual tree and shrub biomass from across different regions of Australia (arid shrublands to tropical rainforests) to develop allometric models for prediction of BGB. We found that the relationship between BGB and stem diameter was generic, with a simple power-law model having a BGB prediction efficiency of 72–93% for four broad plant functional types: (i) shrubs and Acacia trees, (ii) multi-stemmed mallee eucalypts, (iii) other trees of relatively high wood density, and; (iv) a species of relatively low wood density, Pinus radiata D. Don. There was little improvement in accuracy of model prediction by including variables (e.g. climatic characteristics, stand age or management) in addition to stem diameter alone. We further assessed the generality of the plant functional type models across 11 contrasting stands where data from whole-plot excavation of BGB were available. The efficiency of model prediction of stand-based BGB was 93%, with a mean absolute prediction error of only 6.5%, and with no improvements in validation results when species-specific models were applied. Given the high prediction performance of the generalised models, we suggest that additional costs associated with the development of new species-specific models for estimating BGB are only warranted when gains in accuracy of stand-based predictions are justifiable, such as for a high-biomass stand comprising only one or two dominant species. However, generic models based on plant functional type should not be applied where stands are dominated by species that are unusual in their morphology and unlikely to conform to the generalised plant functional group models

    Root biomass of carbon plantings in agricultural landscapes of southern Australia : development and testing of allometrics

    No full text
    Root biomass may to contribute a substantial proportion of the carbon sequestered in new tree plantings, particularly in regions where rainfall and/or site quality is relatively low as this may result in relatively high allocation of plant biomass below-ground to source required water or nutrients. However, root biomass is often overlooked because of difficulty with measurement. In Australia, most carbon plantings are currently mixed-species environmental or mallee eucalypt plantings on agricultural land in regions with rainfall of 250-850mmyear-1. Here, we collated new and existing root biomass data from ca. 900 individual trees or shrubs to develop and test allometric equations for predicting root biomass based on stem diameter (of unharvested trees or shrubs) or height (of coppice harvested trees) in these plantings. Equations developed showed significant differences between groupings of species with differing growth habits or from different genera. Grouping species into categories of: (i) non-eucalypts, (ii) tree-form eucalypts, (iii) unharvested mallee eucalypts, and (iv) coppiced mallee eucalypts, provided equations with model efficiencies of 0.64-0.90. In the process of collating data across different studies, corrections were required for data consistency. Uncertainty analysis showed that although these corrections resulted in some uncertainty in the equations developed, measurement errors, particularly of stem diameter, were also important contributors to this uncertainty. We tested equations developed using data from 11 environmental and mallee planting sites where direct measurements of root biomass were made through whole-plot excavation. Site-level predictions of root biomass from individual tree allometry were effective, with an efficiency of prediction of 0.98. These results indicate that the generic allometric equations developed can be confidently applied across the Australian agricultural region with 250-850mmyear-1 rainfall to obtain accurate regional estimates of root biomass in the currently relatively young (<20year old) environmental and mallee plantings

    Testing the generality of below-ground biomass allometry across plant functional types

    No full text
    Accurate quantification of below-ground biomass (BGB) of woody vegetation is critical to understanding ecosystem function and potential for climate change mitigation from sequestration of biomass carbon. We compiled 2054 measurements of planted and natural individual tree and shrub biomass from across different regions of Australia (arid shrublands to tropical rainforests) to develop allometric models for prediction of BGB. We found that the relationship between BGB and stem diameter was generic, with a simple power-law model having a BGB prediction efficiency of 72–93% for four broad plant functional types: (i) shrubs and Acacia trees, (ii) multi-stemmed mallee eucalypts, (iii) other trees of relatively high wood density, and; (iv) a species of relatively low wood density, Pinus radiata D. Don. There was little improvement in accuracy of model prediction by including variables (e.g. climatic characteristics, stand age or management) in addition to stem diameter alone. We further assessed the generality of the plant functional type models across 11 contrasting stands where data from whole-plot excavation of BGB were available. The efficiency of model prediction of stand-based BGB was 93%, with a mean absolute prediction error of only 6.5%, and with no improvements in validation results when species-specific models were applied. Given the high prediction performance of the generalised models, we suggest that additional costs associated with the development of new species-specific models for estimating BGB are only warranted when gains in accuracy of stand-based predictions are justifiable, such as for a high-biomass stand comprising only one or two dominant species. However, generic models based on plant functional type should not be applied where stands are dominated by species that are unusual in their morphology and unlikely to conform to the generalised plant functional group models
    corecore