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Abstract 37 

Accurate quantification of below-ground biomass (BGB) of woody vegetation is critical to 38 

understanding ecosystem function and potential for climate change mitigation from sequestration 39 

of biomass carbon. We compiled 2 054 measurements of individual tree and shrub biomass from 40 

across a broad range of ecoregions (arid shrublands to tropical rainforests) to develop allometric 41 

models for prediction of BGB. We found that the relationship between BGB and stem diameter 42 

was generic, with a simple power-law model having a BGB prediction efficiency of 72–93% for 43 

four broad plant functional types: (i) shrubs and Acacia trees, (ii) multi-stemmed mallee eucalypts, 44 

(iii) other trees of relatively high wood density, and; (iv) a species of relatively low wood density, 45 

Pinus radiata. There was little improvement in accuracy of model prediction by including 46 

variables (e.g. climatic characteristics, stand age or management) in addition to stem diameter 47 

alone. We further assessed the generality of the plant functional type models across 11 contrasting 48 

stands where data from whole-plot excavation of BGB were available. The efficiency of model 49 

prediction of stand-based BGB was 93%, with a mean absolute prediction error of only 6.5%, and 50 

with no improvements in validation results when species-specific models were applied. Given the 51 

high prediction performance of the generalised models, we suggest that additional costs associated 52 

with the development of new species-specific models for estimating BGB are only warranted when 53 

gains in accuracy of stand-based predictions are justifiable, such as for a high-biomass stand 54 

comprising only one or two dominant species. However, generic models based on plant functional 55 

type should not be applied where stands are dominated by species that are unusual in their 56 

morphology and unlikely to conform to the generalised plant functional group models.  57 

 58 

 59 



 Generic allometrics 3 

 

Introduction 60 

Both above-ground biomass (AGB) and below-ground biomass (BGB) contribute to the 61 

woody vegetation sink within the global carbon budget (Le Quéré et al., 2015). Climate change 62 

may result in shifts in the ratio of tree BGB to AGB (e.g. via changes in water deficit that affect 63 

partitioning or the size distribution of trees), with far-reaching consequences for the global carbon 64 

budget (Ledo et al. 2018). However, BGB cannot be quantified using remote sensing metrics as 65 

has been done for the AGB component (Haverd et al., 2013; Mitchard et al., 2013; Chen et al., 66 

2015). Therefore, the development of models to explain BGB is critical to informing predictions 67 

of biomass yields or biomass carbon stocks (Richards & Evans 2004).  68 

BGB can be estimated from AGB at either an individual- or stand-level through the use of 69 

root-to-shoot ratios (BGB:AGB, Ledo et al., 2018), and this approach has merit when broad-scale 70 

AGB estimates are obtained via remote sensing products rather than via field-based assessments. 71 

However, this approach has limitations. Estimating BGB based on predictions of AGB are subject 72 

to relatively high uncertainties; for example, mean absolute prediction error of AGB was 15–39% 73 

and 13% at the individual- and stand-level, respectively, for plant functional types across the 74 

Australian continent (Paul et al., 2016). In contrast, if BGB of an individual is predicted by 75 

applying verified allometric models to field measurement of stem diameter (D), the uncertainty is 76 

likely to be much lower because errors in D estimation are relatively small (e.g. 2–7%, Paul et al., 77 

2017a). Moreover, BGB:AGB defaults obtained from the average of multiple stands of a given 78 

ecosystem (Mokany et al., 2006) do not explicitly account for variations in stand density and the 79 

mix of species; both of which influence BGB (Westman & Rogers, 1977; Bernardo et al., 1998; 80 

Ritson & Sochacki, 2003; Xue et al., 2011; Gonzalez et al., 2013). Stand-based estimates of BGB, 81 

resulting from application of allometric models with D as a predictor variable to each individual 82 

within a stand, may inherently account for stand density and species-mix. 83 

When developing allometric models for prediction of BGB of woody plants, it is unclear 84 

to what extent data should be pooled or separated according to their morphological, phylogenetic 85 
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and/or phenological characteristics; variation often encapsulated by classification of species into 86 

plant functional types. It is also unclear whether the inclusion of stand characteristics or bioclimatic 87 

variables improves the performance of BGB allometric models above that attained when using D 88 

alone. A true test of the accuracy of such models is a direct validation at the stand-level by 89 

comparing allometry-predicted BGB against that measured through whole-plot excavation. 90 

Although such stand-level validation has been undertaken previously by Paul et al. (2014) for 91 

young plantings in southern Australia, no such validation has been undertaken for more broadly-92 

applicable BGB allometric models derived from root data sampled from both planted and natural 93 

systems, and across a range of stand ages and ecosystem types. 94 

Australia provides a good case study for testing generalised allometric models given its 95 

long history of research contributions to BGB data sets (e.g. Forrest, 1969; Baldwin & Stewart, 96 

1987; Applegate, 1982) spanning a broad range of ecoregions (i.e. arid shrublands to tropical 97 

rainforests) with plant functional types ranging from shrubs and short multi-stemmed trees to some 98 

of the largest trees in the world (Sillett et al., 2015; Specht & Specht, 2002, Specht & Specht, 99 

2013). Improving the assessment of Australia’s vegetation carbon sink is of global importance as 100 

the high inter-annual variability that is characteristic of the global vegetation sink is in large part 101 

due to variability in the carbon capture of the semi-arid ecosystems of Australia (Houghton et al., 102 

2012; Poulter et al., 2014; Ballantyne et al., 2015).  103 

Here we collated destructively-measured BGB datasets from individual trees and shrubs 104 

sampled from a broad range of stands from differing climatic regions of Australia, including those 105 

in natural ecosystems or otherwise established through human intervention (i.e. planted). We then 106 

analysed this data set to assess whether D-based allometric models of BGB were improved: (i) 107 

when based on species rather than broader categories such as plant functional groups; and (ii) by 108 

the inclusion of stand characteristics (age and management) or climatic variables. Our objectives 109 

were firstly to recommend the most appropriate allometric model(s) for estimating BGB in 110 

ecosystems across the Australian continent, and secondly to quantify the accuracy of the 111 
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recommended model(s) when tested against direct measurements of stand-level BGB obtained 112 

using whole-plot excavation across a range of contrasting sites. The recommended models for 113 

predicting BGB were applied together with those previously recommended for prediction of AGB 114 

(Paul et al., 2016) to provide estimates of BGB:AGB ratios for plant functional types of differing 115 

allometry. 116 

 117 

Methods 118 

Data set  119 

Data compilation 120 

Data sets of BGB from destructive harvesting of 2 054 individual trees and shrubs were 121 

obtained from 38 published and unpublished sources (Paul et al., 2017b). These were from a range 122 

of managed and natural woody ecosystems across 210 sites in various Australian ecoregions (Fig. 123 

1).  124 

BGB was defined here as tree and shrub roots of >2 mm in diameter extracted from a soil 125 

depth of 2–3 m, including stem biomass to a height of 10 cm above ground (i.e. the ‘stump’). This 126 

method of root extraction ensured the majority of root biomass was captured because: (i) fine roots 127 

(< 2 mm) of woody plants only comprise 8–14% of the total root biomass, depending on the AGB 128 

(Applegate, 1982; Misra et al., 1998; Li et al., 2003; Mokany et al., 2006), and (ii) typically 95% 129 

of all roots are found within 2 m of the ground surface (Schenk and Jackson, 2002). The stump 130 

was included in the calculation of BGB because 10 cm is a common height targeted in operational 131 

harvesting, and hence, remains together with the roots as part of the unharvested biomass.  132 

When sampling for BGB, sub-samples (0.5–25 kg each, depending on the size of the 133 

individual) were used for percentage moisture content determination, with the lignotuber and/or 134 

root stump sampled separately from other coarse roots. These sub-samples were oven-dried at 135 

70°C to constant weight, with the estimates of moisture content of components used to calculate 136 

the total dry weight of BGB (kg dry matter (DM) of an individual plant). 137 



 Generic allometrics 6 

 

 138 

Fig1 Location of trees or shrubs sampled for biomass by terrestrial ecoregion across Australia (DSWPC, 2015).  139 
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Each tree or shrub excavated for BGB sampling also had a measure of stem diameter (D, 140 

measured over bark). For single-stemmed trees, D was measured at 130 cm height above ground 141 

level (D130); the most common international standard (e.g. Picard et al., 2012). However, for 142 

species of shrubs and small multi-stemmed trees where D130 measurements introduced errors due 143 

to the presence of multiple stems at this height, or where the individual was too small to have a 144 

measurable D130, the D of each stem was typically measured at 10 cm height above the ground 145 

(D10). For multi-stemmed individuals, a single, pooled D estimate was obtained from the diameter 146 

equivalent representing the sum of the cross-sectional areas of each of the individual stems.  147 

 148 

Functional groups 149 

The data set included 128 species. Only seven species (Eucalyptus polybractea, E. 150 

loxophleba, E. kochii, E. globulus, E. occidentalis, Pinus pinaster and P. radiata) were sampled 151 

in sufficient numbers (N > 100 individuals) to have confidence in developing species-specific 152 

models that are likely to reflect the true population (i.e. targeted coefficient of variation in 153 

predicted BGB being ca 5%; Roxburgh et al., 2015). This relatively high sample size requirement 154 

was based on the assumption that, due to measurement errors being relatively high when extracting 155 

roots from the soil, species-specific BGB allometric models are likely to have a relatively high 156 

inter-sample variability, with residual standard deviations being in the order of about 0.50.  157 

Because the sample size of most (95%) species was insufficient to assess the allometry of 158 

BGB at a species-specific level, we categorised all species in the data set into plant functional 159 

types of unique physiognomic growth form (Gitay & Noble, 1997), i.e. groupings of plant species 160 

with distinctive branch architecture and/or stem wood density. There is evidence that such an 161 

approach negates the need to explicitly account for stem wood density in allometric models of 162 

biomass (Paul et al. 2016). The groups used were: 163 
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i. FShrub&Ac. Shrubs and small multi-stemmed trees. This group included the common 164 

Australian genus of Acacia (36% of the FShrub&Ac data set), which comprised both shrub 165 

(31%, e.g. A. hemiteles, A. murrayana and A. victoriae) and small tree (69%, e.g. A. 166 

saligna, A. acuminata and A. aneura) forms. The group also included another 18 genera of 167 

shrubs (generally < 2 m height), with the most common genera being Eremophila, 168 

Dodonaea and Melaleuca. 169 

ii. FMallee. Multi-stemmed (mallee) trees from the genus Eucalyptus, and which commonly 170 

have a lignotuber and relatively high wood density: mean 0.88 ± 0.08 g cm-3 standard 171 

deviation, largely (93%) based on estimates from global stem density database (Chave et 172 

al., 2009; Zanne et al., 2009), with the remainder being directly measured. This group 173 

included 17 species, with the most common being those typically established in 174 

monoculture plantings, such as E. loxophleba subsp. lissophloia (41%), E. polybractea 175 

(24%) and E. kochii subsp. plenissima and subsp. borealis (18%). Other species that were 176 

commonly sampled included E. loxophleba that were not subsp. lissophloia, E. porosa, 177 

and E. platypus.  178 

iii. FTree. Typically single-stemmed trees of relatively high wood density: mean 0.69 ± 0.16 g 179 

cm-3 standard deviation, largely (80%) based on estimates from the global stem density 180 

database, with the remainder being directly measured. This group included 35 genera, most 181 

commonly Eucalyptus (or the closely-related Corymbia) (77%) from either hardwood 182 

plantations or native forests or woodlands. Other well-sampled species included the 183 

introduced Pinus pinaster (14%), which is a common low-rainfall plantation species in 184 

Australia. There was a large diversity of genera sampled from the tropical ecoregion, with 185 

the most common being species from the genera Argyrodendron. 186 

iv. FRadiata. An introduced tree species Pinus radiata, of relatively low stem woody density: 187 

mean 0.40 ± 0.04 g cm-3 standard deviation, largely (86%) based on estimates from the 188 
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global stem density database, with the remainder being directly measured. This species is 189 

the most common species in softwood plantations within high rainfall regions of temperate 190 

Australia.  191 

The FShrub&Ac, FMallee, FTree, and FRadiata groupings comprise about 20, 30, 40 and 10% of the 192 

data set respectively. The geographical extent of the Australian terrestrial ecoregions is shown in 193 

Fig. 1, and the representation of these ecoregions in the sampling for each plant functional type is 194 

shown in Fig. 2. The ‘Mediterranean forests, woodlands and scrub’ was the most well represented 195 

ecoregion (66%). 196 

 197 

Fig 2 Number of individuals (N) sampled of each of the four plant functional types by ecoregion (defined in Fig. 1).  198 

 199 

Harmonisation of BGB data estimates 200 

Because measurement of BGB is resource-intensive and challenging, among the 38 studies 201 

used to build the data set (Paul et al., 2017b), various protocols were utilised, based on the 202 

resources available and the type of ecosystem sampled. The most common protocol used (51% of 203 

the data obtained) was to include the stump in the BGB sampling, and to excavate the area around 204 

the individual to the mid-point boundaries with neighbouring trees, termed ‘Voronoi polygons’ 205 
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(Wildy & Pate, 2002; Saint-Andre et al., 2005). Three other protocols were used for the remaining 206 

49% of the data set. For 20% of the data set, the stump was included with the AGB. In these cases, 207 

stump biomass was estimated using empirical data as described by Paul et al. (2014), and added 208 

to the BGB. For 15% of the data set, BGB was excavated in a set area (generally 4 m2 around a 209 

tree base). Based on empirical evidence described by Paul et al. (2014), it was assumed that only 210 

70.2% of BGB was excavated and so an additional 29.8% was added to the mass sampled. Finally, 211 

for 14% of the data set, excavation of the BGB of an individual tree or shrub was not possible due 212 

to the close spatial association of the target individual with nearby individuals (known as 213 

‘clustering’). In such instances, relatively large areas (50–200 m2) were excavated and the BGB 214 

of the entire vegetation ‘cluster’ was provided. Although root stumps belonging to each individual 215 

could be identified, the remaining coarse roots were allocated to each individual within the 216 

‘cluster’ in accordance with its proportional contribution to the total AGB measured for that 217 

‘cluster’. 218 

As quantified by Paul et al. (2014), uncertainties in allometry-predicted BGB result from 219 

assumptions required to harmonise the BGB data sets derived from alternative protocols. These 220 

uncertainties may be reduced as additional data becomes available to inform the adjustment factors 221 

applied, e.g. varying the adjustment factor for set area excavation based on the size of the tree 222 

and/or the stand density.  223 

 224 

Ancillary stand and site data 225 

Data about the stand and site from which an individual was sampled were also collated 226 

(Table 1). Stand variables included whether the site was ‘natural’ (i.e. naturally-regenerated 227 

shrubland, woodland or forest) or managed (i.e. human-induced establishment from planting of 228 

nursery stock, direct seeding or human-induced natural regeneration). It was noted if a stand was 229 

younger than 20 years. There was insufficient replication, and/or confidence in exact ages, to 230 

facilitate further age-class groupings. Site factors included long-term mean annual rainfall (MAR, 231 
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mm yr-1) and mean annual temperature (MAT, oC) (BoM, 2015; 1970–2015, 2.5 km resolution).  232 

 233 

Standardising diameter estimates, and outlier checking 234 

For many individuals in the data set, D was measured at multiple heights, thereby allowing 235 

derivation of generic relationships for prediction of D at a given height based on D measured at 236 

another height (see Table S2 of Paul et al., 2016). These relationships were used to ‘gap-fill’ D 237 

estimates where required, with D130 or D10 being estimated for 28% of the 2 054 individuals within 238 

the data set.  239 

Very small individuals (D10 < 0.6 cm and D130 < 1.1 cm) were not included in the database 240 

because they were considered unlikely to conform to biomass scaling laws typical of woody plants 241 

as they had relatively little secondary thickening (Niklas, 2004; Enquist et al., 2007). Data for a 242 

further 38 individuals from 10 sites (and six sources) were also excluded as outliers. Here, 243 

individuals were defined as outliers if their measured BGB fell outside the 99.9% confidence 244 

interval of prediction of the appropriate plant functional type model. Although the BGB of these 245 

outliers were assumed to come from a normally-distributed population and had no major influence 246 

on model fit, they were nonetheless removed on the basis that they were highly unlikely values of 247 

BGB for the measured dimensions, and were most likely due to errors in data entry.  248 
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Table 1 Characteristics collated for the entire data set (AllUniversal), or for each of the four categories of plant functional types.(FShrub&Ac, FMallee, FTree, and FRadiata) Abbreviations as follows: 'N', total 249 

number of individuals; 'D10' and ‘D130‘, mean stem diameter measured over bark at 10 cm and 130 cm respectively; 'N stand', number of stands from which the trees or shrubs were harvested; ‘N spp.’, 250 

number of species that were sampled; ‘%Age<20 yrs’, percentage of individuals from stands where age was known to be <20 years old; ‘%Managed’, percentage of individuals from stands that were 251 

managed rather than naturally regenerated without human intervention; ‘MAT’, long-term mean annual temperature, averaged across sites from which individuals were sampled; and ‘MAR’, long-252 

term mean annual rainfall, averaged across sites from which individuals were sampled. Where relevant, standard deviations (and for D10 and D130, the range in values) are provided in parentheses.  253 

Type N              D10  

             (cm) 

             D130  

             (cm) 

N  

stands 

N  

spp. 

%Age  

< 20 

years 

%Managed MAT  

(oC) 

MAR  

(mm yr-1) 

AllUniversal 2 054 17.0 (19.6; 0.6–177.0)               NA 210 128 72.0 77.4 16.9 (2.5) 591 (510) 

FShrub&Ac 351 11.8 (10.6; 0.6–98.4)               NA 45 33 41.0 43.0 18.8 (2.0) 532 (496) 

FMallee 644 11.8 (10.0; 1.0–81.1)               NA 100 17 88.8 97.2 17.0 (1.5) 393 (75) 

FTree 810 24.4 (27.1; 2.1–177.0) 18.9 (21.2; 1.1–138.8) 72 77 65.8 69.5 16.7 (2.9) 781 (683) 

FRadiata 249 13.8 (8.8; 3.6–49.6) 9.8 (7.8; 1.4–41.4) 4 1 92.4 100.0 14.6 (1.8) 569 (211) 

 254 
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Allometric model 255 

There are alternative approaches for developing statistical models of the allometric scaling 256 

relationships of biomass. Traditionally, logarithmic transformations have been used in order to 257 

apply linear regression, with back-transformation required. An alternative is the application of 258 

nonlinear statistical procedures.  There is a lack of consensus in the literature over the preferred 259 

approach (e.g. Packard et al. 2009 cf. Kerkhoff and Enquist 2009). We elected to use the traditional 260 

approach given: (i) critical reviews or tests of different approaches support the validity of this 261 

approach (e.g. Xiao et al. 2011; Ballantyne 2013; Sileshi 2014), and; (ii) it provides consistency 262 

with a complementary study (based on similar datasets) of AGB allometry (Paul et al. 2017). 263 

Bayesian approaches to parameter estimation have also been successfully applied and they offer 264 

great promise, particularly for combining predictions from multiple alternative allometric models 265 

(e.g. Mavouroulou et al. 2014), and for including prior information when constructing or updating 266 

existing allometric models with new data (Zianis et al 2016).  Nonetheless, for large samples sizes 267 

as used in our work, the least squares regression and the Bayesian approaches yield the identical 268 

results (Table 2 of Sileshi 2014; Fig 5 of Zapata et al. 2012). 269 

Once the data set was ‘cleaned’ as described, the simple power-law allometric model was 270 

used to predict BGB of an individual tree or shrub based on the explanatory variable, X (Eqn. 1). 271 

Eqn. 1 was linearized by logarithmic transformation (Eqn. 2) so that coefficients (a and b) could 272 

be estimated using ordinary least squares linear regression analyses, with data corrected for 273 

heteroscedasticity, such that residual errors were normally distributed on the logarithmic scale (ε; 274 

which becomes a multiplicative error in the power model, ε', Picard et al. (2012)): 275 

BGB = a × X b × ε'     (1) 276 

lnBGB= lna + b×lnX + ε    (2) 277 

Eqn. 2 was applied to model the entire dataset (universal model, AllUniversal), and to the data sets of 278 

the four plant functional types: FShrub&Ac, FMallee, FTree and FRadiata. The simplest form of Eqn. 2 had 279 
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X = D, where D is D10 or D130 for FTree and FRadiata, and by necessity, D10 for FShrub&Ac and FMallee, 280 

and hence, AllUniversal. 281 

When back-transforming from the logarithmic to the natural scale, a correction factor (CF) 282 

is required to remove bias. Nine different CFs were reviewed by Clifford et al. (2013), and the 283 

MM CF (Minimize Mean Square Error CF, Shen & Zhu, 2008) was recommended for predicting 284 

biomass of new trees or shrubs as it gave relatively low prediction bias. Because the value of the 285 

MM CF varies with D, a range of MM CF values are reported here. The more commonly used 286 

Baskerville CF (Baskerville, 1972, which assumes the variability is constant across D) may lead 287 

to biased estimates of biomass, particularly for individuals that have a D that is appreciably larger 288 

or smaller than the mean D used to develop the allometric model. But in this study the MM and 289 

Baskerville CFs were consistent, at least to one decimal place, due to our large sample sizes. 290 

Therefore, although the MM CF is recommended, we also report the Baskerville CF for reference.  291 

 292 

Statistical analysis 293 

Model checking and selection criteria 294 

To confirm the validity of tested models, we checked that there was no heteroscedasticity 295 

through examination of probability and quantile plots of the residuals. Then, the performance of 296 

valid models of lnBGB (Eqn. 2) was quantified using four fit statistics: (i) standard errors of the 297 

coefficients lna and b, (ii) residual mean square error, RMSE, (iii) adjusted coefficient of 298 

determination, R2, (iv) Akaike’s information criterion (AIC, Burnham &Anderson, 2004), where 299 

the lowest AIC indicated the most parsimonious model, and to further aid comparisons among 300 

alternative models of differing numbers of parameters, (v) the Mallows’ Cp statistics (Mallows, 301 

1973) were calculated, where a Cp higher than the number of explanatory variables indicates poor 302 

model fit.  303 

Using back-transformed BGB predictions, the predictive performance was quantified by: 304 

(i) model efficiency, expressed as a proportion (EF, Soares et al., 1995), where a model efficiency 305 
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of 1.0 indicates perfect fit, and a value of 0.0 indicates the predictions are no better than simply 306 

using the mean of the observations, and (ii) average bias, or mean of the residuals expressed in 307 

absolute terms and provided as a proportion (%) of the observed value (i.e. mean absolute 308 

prediction error, ‘MAPE’, using back-transformed BGB predictions) (Sileshi, 2014).  309 

 310 

Alignment of plant functional groupings for BGB and AGB allometries 311 

To facilitate the application of allometric models of both AGB and BGB to various stands 312 

across Australia, the sub-categories of plant functional groupings used for BGB were consistent 313 

with those applied for allometric models of AGB (Paul et al., 2016, see Fig. S1). The eight species 314 

groups identified by Paul et al. (2016), and shown in Fig. 3, were only pooled together when their 315 

allometries for BGB did not statistically differ. General linear modelling (GLM) was used to assess 316 

whether lnBGB prediction from lnD was significantly influenced by species group, and if so, 317 

which species groupings had statistically (P<0.05) unique BGB allometry. Although alternative 318 

statistical approaches are available for testing whether species or groups of species have 319 

statistically-significant allometry, these provided results consistent with GLM (Paul et al. 2018). 320 

For practical reasons, plant species typically measured at D10 (shrubs and multi-stemmed trees) 321 

required separate allometric models to those typically measured at D130 (single-stemmed trees). 322 

Hence, the analysis of unique functional sub-categories was undertaken for both of these broad 323 

groups of species. As indicated in Fig. 3, from the eight species groups, four categories of plant 324 

functional types were required for BGB allometric models (FShrub&Ac, FMallee, FTree and FRadiata).  325 
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 326 

Fig 3 Groupings of plant species into plant functional types as applied in AGB generic allometric models (Paul et al., 2016), and 327 

how these relate to the grouping of plant species into the plant functional types used here for BGB generic allometric models. 328 

 329 

Effect of level of generalisation on BGB prediction accuracy 330 

The impact of the level of generalisation of allometric models on the accuracy of BGB 331 

prediction was also explored. Data from the seven tree species with N > 100 (E. polybractea, E. 332 

loxophleba, and E. kochii, E. globulus, E. occidentalis, P. pinaster and P. radiata) were used to 333 

assess the improvement in fit in BGB predictions as specificity in the allometric models increased 334 

(i.e. Alluniversal model cf. functional-type model cf. species-specific model). Large samples sizes 335 

were required to target a 5% coefficient of variation prediction of biomass when applying 336 

allometric models of relatively high variability, as anticipated for BGB (i.e. residual standard 337 

deviations 0.47–0.50; Roxburgh et al., 2015). Although the shrub species Dodonaea viscosa subsp. 338 

angustissima and Eremophila sturtii were not as well sampled as the seven tree species (i.e. N=49–339 

51, thereby indicating a coefficient of variation of prediction of about 7%, Roxburgh et al., 2015), 340 

data for these species were used to explore whether the application of the generalised multi-species 341 
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FShrub&Ac model generates significant bias in prediction of BGB when compared to a species-342 

specific model. 343 

 344 

Effect of stand and site factors on BGB allometry 345 

General linear modelling was used to assess whether accounting for stand or site factors 346 

improved the performance of Eqn. 2, as indicated by an improvement in the fit statistics. The stand 347 

and site factors tested included: (i) stand age (<20 years or ≥20 years), (ii) management (natural 348 

or managed vegetation), (iii) ecoregion (as per Fig. 2), (iv) MAT, and (v) MAR. Interactions of 349 

these site-factors with lnD were included in the model only where these were significant.  350 

Within our data set (Table1), the single-stemmed tree species Eucalyptus populnea was the 351 

most suitable for comparison between ecoregions: (i) ‘Temperate Grasslands, Savannas and 352 

Shrublands’, where MAR was 400–460 mm (N=20, collated from two stands), and (ii) ‘Tropical 353 

and Subtropical Grasslands, Savannas and Shrublands’ where MAR was 600–1 070 mm (N=36, 354 

collated from three stands). This was because the sample sizes of 20–36 for this species indicated 355 

a coefficient of variation of allometry-predicted biomass of only 8–11% (Roxburgh et al., 2015). 356 

These data provided a case study that enabled us to test the effect of ecoregion on the FTree model. 357 

 358 

Model validation using whole plot root excavation 359 

To test the accuracy of allometric models, we utilised data from 11 stands of varying 360 

structure and contrasting environments (Table 2) where whole plots were excavated to obtain 361 

‘true’ and direct measurements of stand-scale BGB as described by Paul et al. (2014). The generic 362 

FShrub&Ac, FMallee and FTree models of best fit we identified (Eqn. 2, using D as the predictor variable) 363 

were applied to inventories of D obtained from each of these 11 stands. The allometry-predicted 364 

BGB of all individuals within the stand was then summed to provide a predicted BGB at the stand-365 

level. We calculated the resulting prediction quality statistics of EF, MAPE and RMSE. To 366 

determine whether there was any improvement in model performance when less generalised 367 
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models are applied, this analysis was repeated with the use of species-specific models when they 368 

were available (Table S1). 369 

 370 

Table 2 Summary of the main characteristics of 11 contrasting stands where whole-plot BGB excavation was used to test the 371 

accuracy of generalised allometric models based on plant functional type. Modified from Paul et al. (2014). Abbreviations as 372 

follows: ‘MAR’, long-term mean annual rainfall; ‘Tree N’, number of live trees or shrubs measured; ‘Type of stand’, where A 373 

refers to ‘Belt monoculture planting of the mallee eucalypt species E. loxophleba subsp. lissophloia’, B refers to ‘Block 374 

monoculture planting of the mallee eucalypt species E. loxophleba subsp. lissophloia’, C refers to ‘Belt planting of mixed-species’, 375 

and D refers to ‘Block planting of mixed-species’. 376 

Site Location 

 

(decimal degrees) 

MAR 

 

(mm yr-1) 

Age 

 

(year) 

Tree 

N 

Stand-scale 

AGB 

(Mg DM ha-1) 

Stand-scale 

BGB 

 (Mg DM ha-1) 

Type of 

stand 

Strathearn -35.0485 S, 149.2325 E 637 15 371  38.9 25.30 C 

Moir^ -34.2809 S, 118.1820 E 439 20 346 42.4 17.07 C 

Jenharwill -36.3958 S, 144.4304 E 406 12 163 69.1 21.34 D 

Gumbinnen -36.2447 S, 141.8148 E 347 10 305 19.1 4.48 C 

McFall -33.7290 S, 117.3217 E 438 15-24 313 189.6 76.00 D 

Leos -37.8381 S, 147.7582 E 626 16 96 113.6 44.94 D 

Pepal# -33.4865 S, 117.7912 E 406 11 77 20.87 14.77 B 

Bird# -32.8515 S, 117.5892 E 376 11 41 37.68 18.27 B 

Quicke# -32.6736 S, 118.2361 E 339 14 29 77.63 37.79 B 

Temby# -33.1457 S, 117.7187 E 353 16 44  22.61 12.32 A 

Angel# -30.1970 S, 117.1160 E 297 16 34 9.93 9.78 A 
# Species-specific allometric model for Eucalyptus loxophleba (Table S1) was applied as an alternative to the FMallee model. 377 

^ Species-specific allometric model for E. occidentalis (Table S1) was applied as an alternative to the FTree model for this species, 378 

although within this mixed-species stand, E. occidentalis only comprised 6% of the individuals sampled, or 16 individuals out of 379 

the 275 individual trees or shrubs excavated for direct measurement of stand-level BGB.  380 

 381 

BGB:AGB 382 

The allometric models developed for BGB, and those developed by Paul et al. (2016) for 383 

AGB, were applied to predict the BGB:AGB ratio for the different sub-categories of plant 384 

functional types (Fig. 3). A comparison of this predicted BGB:AGB ratio with that observed was 385 

possible for the 1 990 individuals in the data set where both AGB and BGB were measured. We 386 

then compared the average (± standard deviation) allometry-predicted BGB:AGB between the 387 

different species groups. We also explored the relationship between allometry-predicted 388 
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BGB:AGB and the D of an individual tree or shrub.  389 

 390 

Results  391 

Allometric models 392 

The model (Eqn. 2) predicted BGB with good accuracy for four categories of plant 393 

functional types: FShrub&Ac, FMallee, FTree, and FRadiata (Fig. 4a, d, g, j). The amount of variation in 394 

lnBGB explained by these models was 90–97%, with errors (RMSE) of 0.26–0.55 (Table 4). When 395 

lnBGB was back-transformed and bias corrected, there was a relatively high uncertainty in the 396 

prediction of BGB for any given tree or shrub for a given D (see 95% confidence intervals of 397 

prediction, Fig. 4b, e, h, k). However, these individual errors tend to cancel out when predictions 398 

are made across a large number of individuals. The generalised models provided reasonable 399 

accuracy across the data sets, giving an efficiency of prediction of BGB of 72–93%, with a MAPE 400 

range of 21–55% (Fig. 4c, f , i , l; Table 3).  401 
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Table 3 The fitted coefficient (and their standard errors) and fit statistics of generalised allometric models for BGB of the form given in Eqn. 2, and using a predictor of D measured at 10 cm height 402 

(D10) or 130 cm height (D130). Here RMSE, R2, CF, EF, MAPE, and N refer to the standard error of the linear regression, adjusted coefficient of determination, bias correction factor, model efficiency 403 

(based on back-transformed BGB predictions), mean absolute percentage error (based on back-transformed BGB predictions), and sample size, respectively. All models fitted were highly significant 404 

(P<0.001). The diameter range relevant to each model is indicated in brackets (assuming a minimum D10 of 0.6 cm, and a minimum D130 of 1.1 cm). Parameters and performance of the species-specific 405 

allometric models are provided in the Table S1. 406 

Model ln(a) b MM CF* Baskerville CF† RMSE R2 EF MAPE N 

AllUniversal (D10 <177 cm) -3.524 (0.045) 2.295 (0.017) 1.2373–1.2421 1.2426 0.659 0.896 0.735 78.9 2 054 

FShrub&Ac (D10 <98 cm)  -3.553 (0.075) 2.185 (0.033) 1.0782–1.1508 1.1601 0.545 0.928 0.715 55.2 351 

FMallee (D10 <81 cm) -2.946 (0.071) 2.302 (0.031) 1.1047–1.1154 1.1160 0.469 0.899 0.926 44.4 644 

FTree (D10 <177 cm) -3.854 (0.046) 2.389 (0.016) 1.0913–1.0955 1.0959 0.428 0.965 0.703 40.5 810 

FTree (D130 <139 cm) -2.682 (0.039) 2.212 (0.015) 1.0923–1.0953 1.0958 0.428 0.966 0.840 40.4 810 

FRadiata (D10 <50 cm) -4.858 (0.067) 2.463 (0.027) 1.0259–1.0331 1.0575 0.257 0.972 0.902 21.3 249 

FRadiata (D130 <41 cm) -3.740 (0.152) 2.299 (0.058) 1.0272–1.0522 1.0534 0.322 0.915 0.906 26.8 147‡ 

*Recommended Minimize mean Square Error (MM) correction factor (CF). 407 

†Simpler Baskerville correction factor (CF) for reference. 408 

‡102 data sets with D130 < 5 cm excluded in this model. 409 
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 410 

 411 

Fig 4 Generic allometric equations for prediction of BGB from stem diameter (D cm) of (a, b, c) shrubs and acacia trees (FShrub&Ac, 412 

where D was at 10 cm, D10), (d, e, f) multi-stemmed mallee eucalypt trees (FMallee where D was at 10 cm, D10), (g, h, i) single-413 
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stemmed trees (FTree, where D was at 130 cm, D130), and (j, k, l) Pinus radiata tree species (FRadiata, where D was at 130 cm, D130). 414 

There were three plots for each plant functional type: (a, d, g, j) indicating Eqn. 2 fitted to the lnBGB data set, (b, e, h, k) indicating 415 

accuracy of the back-transformed and biased corrected model, and (c, f, i, l) indicating observed vs. predicted BGB. Black solid 416 

lines represent the model of best fit, dotted lines the 95% prediction interval, and dashed lines the 1:1 line. Values in parentheses 417 

are the 95% prediction interval of the slope and intercept. NB: To improve the clarity of the figure, panels (b) and (c) excluded 418 

three observations of the relatively large (D10 of 49–98 cm, and height of 17–20 m) Acacia trees sampled from the wet tropics. 419 

 420 

For FTree and FRadiata models, there was no consistent difference in fit statistics when the 421 

model (Eqn. 2) used the explanatory variable D10 instead of D130 (Table 3). However, for FRadiata 422 

models using lnD130, it was necessary to exclude trees with D130 < 5.0 cm to avoid positive bias in 423 

predictions of larger (D130 > 30 cm) trees.  424 

The performance of the AllUniversal model was relatively poor (efficiency of prediction of 425 

BGB only 74%, Fig. 5a) because it generalises across plant functional types with substantially 426 

different BGB allometry (Fig. 5b, c). General linear modelling demonstrated that allometry of 427 

mallee eucalypts were significantly different (p<0.001) to that of shrubs and other multi-stemmed 428 

trees (e.g. Acacia species) (Fig. 5c,d), while allometry of Pinus radiata was significantly different 429 

(p<0.001) to that of other single-stemmed trees (Fig. 5d,e). These results justify splitting the 430 

universal model into four plant functional type models (Table 3, Fig. 4). 431 
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 432 

Fig 5 Back-transformed and bias-corrected generic allometric relationships (Eqn. 2) for prediction of BGB from stem diameter (D at 10 cm, D10) of: (a) all individuals (AllUniversal), and at a reduced x-433 

axis, the statistically different (b, c) FShrub&Ac and FMallee models representing shrub and multi-stemmed tree species groupings, and (d, e) FTree and FRadiata models representing groups of single-stemmed 434 

trees. The second plot in the panel (c, e) shows the first plot (b, d) with the x-axis further reduced to increase clarity. Black solid and grey dashed line represent the statistically different models. 435 
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 The application of alternative models to the seven species that were adequately sampled 436 

(N > 100) showed that the predictive performance generally increased with increasing model 437 

specificity: universal cf. plant functional type cf. species-specific. When compared to the 438 

application of the universal model, the application of more specific models generally increased the 439 

efficiency of prediction of BGB by up to 15–17%, while MAPE decreased by up to 16–50% (Table 440 

4). There were some exceptions, with the application of the AllUniversal model to P. radiata, or the 441 

application of FMallee to E. kochii, resulting in substantial bias as indicted by an MAPE of 100–442 

226% (Table 4). The investigation of BGB allometry of the two shrub species shown in Fig. 6 also 443 

demonstrated the need for caution when applying generic models. One species had a slight bias in 444 

prediction of BGB when the generic FShrub&Ac model was applied (mean bias +2.3 kg for D. viscosa 445 

subsp. angustissima), but with bias being negligible for the other species (< 0.5 kg, E. sturtii) (Fig. 446 

6a, b). Indeed when the FShrub&Ac model was applied to predict BGB of D. viscosa subsp. 447 

angustissima, the prediction efficiency was only 13% while MAPE was 73%. The performance of 448 

the FShrub&Ac was much better for the second shrub species, with an efficiency of prediction of 90% 449 

and a MAPE of only 33%. 450 

 451 

Table 4 For the seven species that were well sampled (N > 100), comparison of prediction performance of lnBGB (RMSE, R2, 452 

AIC), and of BGB when back-transformed (EF and MAPE), following the application of AllUniversal and the less generalised plant 453 

functional type (Table 3) and species-specific models (Table S1). All models applied had, by necessity, D10 as the explanatory 454 

variable. N indicates the number of individuals to which the models were applied. Note AIC can only be compared across categories 455 

where N is the same. 456 

Species Model N RMSE R2 AIC EF MAPE 

 AllUniversal 154 0.36 0.56 -114.5 0.59 30.3 

E. polybractea FMallee 154 0.36 0.87 -304.3 0.57 35.1 

 E. polybractea 154 0.36 0.88 -309.2 0.74 30.5 

 AllUniversal 312 0.39 0.65 -101.7 0.80 40.1 

E. loxophleba FMallee 312 0.39 0.91 -532.6 0.93 30.2 

 E. loxophleba 312 0.39 0.92 -581.9 0.93 34.5 

 AllUniversal 114 0.51 0.88 -134.2 0.78 43.8 

E. kochii FMallee
# 114 0.51 0.82 -83.3 -0.15 100.9 

 E. kochii 114 0.51 0.90 -147.3 0.58 47.1 

 AllUniversal 221 0.33 0.94 -359.4 0.96 76.2 
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E. globulus FTree 221 0.32 0.96 -450.6 0.98 41.4 

 E. globulus 221 0.32 0.97 -502.5 0.99 25.8 

 AllUniversal 114 0.32 0.90 -235.2 0.97 28.9 

E. occidentalis FTree 114 0.32 0.85 -191.0 0.94 26.0 

 E. occidentalis 114 0.32 0.91 -251.2 0.99 26.1 

 AllUniversal 114 0.41 0.96 -194.7 0.87 51.6 

P. pinaster FTree 114 0.42 0.96 -187.6 0.84 36.9 

 P. pinaster 114 0.41 0.96 -195.7 0.79 38.3 

P. radiata AllUniversal 249 0.28 0.60 -8.72 -0.45 226.0 

 FRadiata 249 0.26 0.97 -668.8 0.90 21.3 

#FMallee model developed for 0.6–81 cm mallee eucalypt trees over-predicted BGB for the 114 relatively small E. kochii trees (D10 457 

of 1–28 cm); FMallee application is not recommended for this species until further model validation is possible.  458 

 459 

 460 

Fig 6 Application of generic plant functional-type allometric equations for prediction of BGB from stem diameter (D, cm) of (a, 461 

b) two species of shrubs sampled at the Meadows site (FShrub&Ac, D10), and (c, d) the single-stemmed tree species Eucalyptus 462 

populnea sampled across two different ecoregions (FTree, D130). Plots (a) and (c) indicate Eqn. 2 fitted to the lnBGB data set, and 463 
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plots (b) and (d) indicate the accuracy of the back-transformed and biased corrected model. Thick black solid lines represent the 464 

generic model of best fit, and dotted lines, the 95% prediction interval. The thin black and grey dashed lines represent the model 465 

of best fit for the individual species (a, b), or ecoregions (c, d).  466 

 467 

Inclusion of stand and site-factor predictor variables 468 

When compared to using D alone, including stand-factors (age and management) resulted 469 

in only minor model improvements, with the increase in explained variation of lnBGB being 470 

consistently < 2% (Table 5). Furthermore, for categories of plant functional types where a majority 471 

of the individuals were from planted stands (e.g. FMallee and FRadiata), there were insufficient data 472 

sets from natural stands to statistically ascertain any impact of management on BGB allometry. 473 

Accounting for ecoregion, MAT or MAR also resulted in relatively small model improvements, 474 

with the increase in explained variation being < 3% (Table 5). These findings were reinforced by 475 

the observation that there was negligible difference in BGB allometry for the one species (E. 476 

populnea) that was reasonably well sampled from two contrasting climates and ecoregions (Fig. 477 

6c, d).  478 

 479 

Table 5 Fit statistics from general linear model analysis for assessing whether the allometric model represented by Eqn. 2 was 480 

improved by the inclusion of site-factors (and their interactions with lnD) as supplementary predictor variables. Factors tested 481 

included: (i) binary categorical variable [1,0] of stand age (Age<20[1,0]: relatively young at <20 yrs, or older), (ii) binary categorical 482 

variable [1,0] of stand management (Managed[1,0]: managed or ‘natural’), (iii) categorical variable ecoregion (see Fig. 1), (iv) 483 

numerical variable of mean annual temperature (MAT), and (v) numerical variable of mean annual rainfall (MAR). Interactions of 484 

these site-factors with lnD were included in the model only where they were significant. Numbers in parentheses are the number 485 

of parameters in the model (Cp values greater than this number indicate models of poor fit). Here, ‘NA’ refers to not applicable, 486 

and ‘n.s.’ refers to not statistically significant, with P<0.05. Note; AIC can only be compared across categories where N is the same. 487 

Model Variables RMSE R2 Cp AIC 

FShrub&Ac lnD10 alone 0.547 0.928 2.00 (2) -422 

N=351 + Age<20[1,0] 0.503 0.939 4.00 (4) -478 

 + Managed[1,0] 0.505 0.939 4.00 (4) -475 

 + Ecoregion 0.492 0.943 8.00 (8) -490 

 + MAT 0.537 0.931 4.00 (4) -431 

 + MAR 0.511 0.937 4.00 (4) -467 

FMallee lnD10 alone 0.469 0.899 2.00 (2) -972 
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N=644 + Age<20[1,0] 0.466 0.900 3.00 (3) -980 

 + Managed[1,0] n.s. n.s. n.s. n.s. 

 + Ecoregion n.s. n.s. n.s. n.s. 

 + MAT 0.442 0.911 4.00 (4) -1049 

 + MAR n.s. n.s. n.s. n.s. 

FTree lnD130 alone 0.428 0.965 2.00 (2) -1372 

N=810 + Age<20[1,0] 0.407 0.969 4.00 (4) -1451 

 + Managed[1,0] 0.412 0.968 4.00 (4) -1433 

 + Ecoregion 0.408 0.969 12.00 

(12) 

-1423 

 + MAT 0.421 0.967 4.00 (4) -1399 

 + MAR 0.424 0.966 4.00 (4) -1386 

FRadiata lnD130 alone 0.325 0.915 2.00 (2) -329 

N=147 + Age<20[1,0] 0.275 0.939 3.00 (3) -377 

 + Managed[1,0] NA NA NA NA 

 + Ecoregion 0.266 0.943 4.00 (4) -385 

 + MAT 0.257 0.947 4.00 (4) -395 

 + MAR 0.282 0.936 4.00 (4) -368 

 488 

Model validation using whole-plot root excavation 489 

Comparison of allometry-predicted BGB to observed BGB from direct whole-plot 490 

excavation across 11 contrasting stands (Table 2), showed prediction of stand-level BGB was good 491 

overall. The efficiency of prediction was 93%, and the MAPE was 20.4% (Fig. 7). When this 492 

validation was repeated with application of species-specific models (where available), there was a 493 

negligible difference in the accuracy of stand-level BGB prediction, with efficiency of prediction 494 

and MAPE both changing by less than one percent (Fig. S1 cf. Fig. 7).  495 

 496 

 497 
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 498 

Fig 7 Relationship between stand-level BGB from whole-plot harvesting at 11 contrasting stands (Table 2) and that predicted for 499 

those stands through the application of the generic plant functional type allometric models (Table 3). Values in parentheses are the 500 

95% prediction interval of the slope and intercept. Grey dashed line represents the 1:1 line.  501 

 502 

BGB:AGB  503 

The ratio of BGB:AGB was predicted to differ between the seven unique plant functional 504 

types, with the highest values for other low wood density trees and mallee trees and the lowest 505 

values for multi-stemmed acacias (Fig. 8). With the exception of other high wood density trees 506 

(FOther-H), BGB:AGB was predicted to rapidly decline with increasing size of the individual, with 507 

equilibrium values attained at D10 > 50 cm (Fig. 8a, Fig. S2).  508 

The size distribution of individuals sampled will influence the average observed 509 

BGB:AGB ratios. For the samples here, Mallee eucalypts tended to have relatively high 510 

BGB:AGB, while the softwood species Pinus radiata had relatively low BGB:AGB (Fig. 8b). 511 

Comparison of the observed and predicted mean (± standard deviation) BGB:AGB no consistent 512 

significant bias in predicted BGB:AGB (Fig. 8b). This may have been partly attribute to the high 513 

variability in observed BGB:AGB within each category of plant functional type. Due to the high 514 
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accuracy of the generic allometric models derived for AGB and BGB, predicted BGB:AGB ratios 515 

were in agreement (by within ±0.07) with those observed (Fig. 8b).  516 

 517 

 518 

Fig 8 Predicted BGB:AGB from application of generic allometric equations of BGB and AGB (Paul et al., 2016), in relation to: 519 

(a) the size of the individual (D10) for contrasting sub-categories of plant functional types, and (b) the average BGB:AGB observed 520 

among contrasting sub-categories of plant functional types. Error bars represent standard deviations.  521 

 522 
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Discussion 524 

Allometric models 525 

Results confirmed that across a wide range of individuals, BGB can be predicted using 526 

generalised plant functional type allometric models with reasonable accuracy and efficiencies of 527 

72–93% (Fig. 4). Significantly, this is achieved using the easily measured predictor variable of D.  528 

Although the BGB allometric models here were based on datasets covering a broader range 529 

of vegetation types and site characteristics than have previously been collated for Australia 530 

(including the previously under-represented tropical ecoregions), the fit statistics obtained were 531 

comparable to those for generalised allometric models previously developed for much smaller 532 

datasets covering smaller stem diameters (Paul et al., 2014). Hence, increasing the domain of 533 

application of generalised allometric models does not substantially reduce their prediction 534 

accuracy. For example, considering single-stemmed trees of D130 30–45 cm, the average (± 535 

standard deviation) BGB of 265 ± 89 kg for trees of various genera from tropical moist broadleaf 536 

forests (ca 2 000 mm yr-1 MAR, N =17, Fig. S3a) was similar to the 266 ± 118 kg found for 537 

eucalypt trees from the Mediterranean ecoregion (ca 430 mm yr-1 MAR, N = 14, Fig. S3b). 538 

Interestingly, although BGB was similar among these individuals of similar size, the area occupied 539 

by the root architecture could vary substantially between ecoregions and/or soil types. In our 540 

example above, the BGB densities differed between ecoregions (from 3–7 kg to 16–27 kg m-3 soil, 541 

respectively for tropical moist broadleaf forests and the sparse stands from Mediterranean 542 

ecoregions).  543 

Of the plant functional type models developed here, the model for relatively small multi-544 

stemmed plants (FShrub&Ac) was the least precise, with a relatively high RMSE of 0.545 (Table 3). 545 

Measurement of D for such small multi-stemmed individuals is prone to relatively high 546 

measurement errors (Paul et al., 2017a). Further research is currently underway to explore if 547 

alternative predictor variables can improve the precision of BGB prediction of such individuals. 548 

The data set used here was a sub-set of that utilised by Paul et al. (2016) to assess 549 
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generalised allometry for AGB of trees and shrubs. Performance of the BGB AllUniversal model was 550 

much poorer than the AGB AllUniversal model provided by Paul et al. (2016), with the MAPE being 551 

78.9% cf. 40.7%. The AllUniversal model is therefore relatively inaccurate for BGB prediction, with 552 

a higher influence of plant functional type on allometry for BGB than for AGB.  553 

Application of more specific models generally increased the efficiency of prediction of 554 

BGB by up to 15–17% (Table 4). This is largely consistent with previous work showing that 555 

application of generic multi-species models (i.e. based on plant functional type) does not generally 556 

result in loss of accuracy in allometry-predicted biomass compared to species-specific models 557 

(Feller 1992; Williams et al., 2005; Montagu et al., 2005; Mugasha et al., 2013; Mbow et al., 558 

2014; Ali et al., 2015; Ishihara et al., 2015; Paul et al., 2016). However, there are exceptions, with 559 

biased estimates of BGB for some non-conforming species, which is of concern when applying 560 

generalised allometric models to stands dominated by such species. For example, if a woodland is 561 

composed of predominately E. kochii of moderate size (D10 10–20 cm), and the generic FMallee 562 

model is applied, stand-level BGB estimates are likely to be over-estimated, with bias averaging 563 

+6.4 kg per tree (Table 4). Similarly, if a shrubland is composed of predominately D. viscosa 564 

subsp. angustissima of moderate size (D10 10–20 cm), and the generic FShrub&Ac model is applied, 565 

stand-level BGB estimates are likely to be over-estimated, with bias averaging +2.3 kg per tree 566 

(Fig. 6b).  567 

Further research is required to increase the sample size of different species represented by 568 

each plant functional type, and thereby, quantify which species are non-conforming (Paul et al. 569 

2018). Only seven species were sampled sufficiently to develop species-specific models, with most 570 

of these being relatively small trees sampled from managed monocultures. There is relatively large 571 

inherent variability in the species-specific models for BGB (RMSE = 0.32–0.51, Table S1). Given 572 

this, and based on the findings of Roxburgh et al. (2015), an N of ca 50–110 individuals will be 573 

required to develop accurate species-specific models of BGB, i.e. to achieve a coefficient of 574 

variation of BGB prediction of 5%. Even assuming consistency in the protocols used to excavate 575 
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roots, a larger inherent variability (and hence, larger required sample size) of BGB cf. AGB 576 

allometry is to be expected. Due to the difficulty in sampling BGB, measurement errors are likely 577 

to be relatively high. Furthermore, BGB allometry may be influenced by factors such as the 578 

presence of substantial root suckering, and the degree of senescence in response to recent 579 

disturbance, e.g. fire, grazing. In the example shown in Fig. 6b, BGB allometry of E. sturtii may 580 

be related to this species’ ability to form extensive colonies via root suckers, whereas BGB 581 

allometry of the relatively fire- and grazing-sensitive D. viscosa subsp. angustissima may be 582 

influenced by disturbance-induced cycles of senescence and re-shooting (NSW LLS, 2014).  583 

 584 

Inclusion of stand- or site-factor predictor variables 585 

Including site-related factors such as stand characteristics (e.g. age, management), and 586 

climatic variables (e.g. MAR, MAT), even where statistically significant, did not markedly 587 

improve the predictive ability of D-based models, with increases in R2 of < 3% (Table 5). Indeed, 588 

even when the same species was reasonably-well sampled across contrasting ecoregions, 589 

negligible differences in BGB allometry were observed (Fig. 6d). For a given species and size 590 

range, within-site variation is often as great as between-site variation in BGB. Thus there is only 591 

a minor trade-off in accuracy from application of simple power-law models based on D-alone 592 

relative to more complex models that include multiple explanatory variables (Sileshi, 2014; Picard 593 

et al., 2015; Paul et al., 2016).  594 

Recent analysis of a global biomass data set which combined our data set (Table 1) with 595 

similar data sets from other continents (Ledo et al., 2018), showed that after D, the next most 596 

important factor influencing allometry (in this case, of BGB:AGB) was the deficit between 597 

monthly rainfall and potential evapotranspiration. BGB:AGB increased with increasing moisture 598 

deficit, which accounted for 17% of the variance in BGB:AGB. Although BGB:AGB differed 599 

between different vegetation types, due to a correlation between vegetation type and climate, when 600 
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the moisture deficit was accounted for, the vegetation type ceased to be an important explanatory 601 

variable (Ledo et al., 2018).  602 

In the present study, climate factors appeared to be inherently accounted for in the grouping 603 

of species into plant functional types. The inclusion of plant functional types greatly improved the 604 

performance of the AllUniversal models for Australian trees and shrubs (Fig. 5, Table 4), yet the 605 

inclusion of climate factors had marginal impact (Table 5). Clearly, plant functional attributes 606 

often reflect coordinated adaptations to environmental factors (Onoda et al., 2010; van Gelder et 607 

al., 2006; Banin et al., 2012; Pfautsch et al., 2016), and such convergence probably also accounts 608 

for differences in allometry between plant functional types.  609 

Despite plant functional types inherently accounting for some climate-related factors, for 610 

each of the four plant functional types, the inclusion of ecoregion, MAR and/or MAT as 611 

explanatory variables resulted in some (although minor) improvement to predictive performance, 612 

with this being greater for BGB (Table 5) than for AGB (Paul et al., 2016). It remains unclear 613 

whether the effect of such climate variables would have been greater on BGB allometry of plant 614 

functional types had our data set encompassed an even greater range of the ecoregions. A next step 615 

is to evaluate the impact of climate, and hence climate change, on BGB allometry through 616 

measurement of more individuals from the relatively under-sampled combinations of various plant 617 

functional types and ecoregions (e.g. tropical and subtropical regions, medium to high rainfall, tall 618 

closed temperate forests, and arid shrublands, Fig. 2). 619 

Another caveat was that our assessment of the impacts of stand age and management on 620 

BGB allometry included only broad categories, e.g. managed or unmanaged, and younger or older 621 

than 20 years. This was a necessity given insufficient observations in the data set to explore 622 

whether, across a range of plant functional types and ecoregions, BGB allometry changes with 623 

age, stand structure and management. Although relatively localised and species-specific studies of 624 

BGB have explored some of these factors (e.g. Ritson & Sochacki, 2003), further work is required 625 

to confirm their significance more broadly.  626 
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 627 

Model validation using whole plot root excavation 628 

Application of allometric models based on plant functional type resulted in high efficiency 629 

of prediction of stand-level BGB across contrasting direct-measurement stands (Fig. 7). 630 

Previously, Paul et al. (2014) used these same whole-plot excavation data to validate BGB 631 

allometric models developed using BGB of individuals covering a smaller range of sizes, and 632 

sampled from mixed-species environmental and mallee plantings. Despite the fact that allometric 633 

models developed in this study included a broader range of vegetation types and site characteristics 634 

compared to those developed by Paul et al. (2014), the decline in efficiency of BGB prediction 635 

across these 11 direct stands was only 6%. This provides further evidence that increased 636 

applicability of allometric models does not result in significant loss of accuracy. 637 

Application of species-specific models resulted in only a modest improvement in the 638 

efficiency of prediction of stand-level BGB compared to the application of more generalised 639 

models based on plant functional types (Fig. S1 cf. Fig. 7). Furthermore, it may be that, for mixed-640 

species stands, due to the smaller sample size and larger overall number of model coefficients to 641 

parameterise, uncertainties associated with the propagation of errors (including measurement, 642 

model-fitting and prediction errors) may be larger following application of multiple species-643 

specific models compared to a single generalised multi-species model. Additionally, large sample 644 

sizes are required for each species-specific model (Roxburgh et al., 2015), resulting in significant 645 

costs associated with development of models for each new species. These likely higher 646 

uncertainties and costs would negate the small gain in average accuracy of stand-level BGB 647 

prediction when applying multiple species-specific models versus a generalised multi-species 648 

model in mixed-species stands. Hence, models generalised at the level of plant functional group 649 

(Eqn. 3a–d, reported here using the Baskerville CF) are recommended for application in both 650 

Australia, and for validation in similar ecoregions in other continents.  651 

BGB (kg) for species of: 652 
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FShrub&Ac = exp [-3.553 + 2.185 lnD10] × 1.160  (3a) 653 

FMallee = exp [-2.946 + 2.302 lnD10] × 1.116   (3b) 654 

FTree = exp [-2.682 + 2.212 lnD130] × 1.096   (3c) 655 

FRadiata = exp [-3.740 + 2.299 lnD130] × 1.053  (3d) 656 

 657 

As with all allometric models, to avoid bias in BGB predictions, recommended models in 658 

this study should only be applied within their valid diameter range as indicated by the maximum 659 

D sampled (e.g. Table 3, Table S1). There are two exceptions to the recommendation of application 660 

of Eqn. 3 for stand-level prediction. First, where the trade-off between accuracy and cost 661 

effectiveness is relatively high, e.g. for a given high-biomass stand comprising only one or two 662 

dominant species. Here, additional costs associated with obtaining species-specific models may 663 

warrant the improved accuracy. Second, where BGB estimates are required for stands dominated 664 

by species suspected of not conforming to the generalised plant functional groups models (e.g. 665 

poor representation of E. kochii by the FMallee model, and D. viscosa subsp. angustissima by the 666 

FShrub&Ac model, respectively).  667 

 668 

BGB:AGB 669 

As outlined earlier, estimates of BGB based on D are preferable to those based on a ratio 670 

to AGB, particularly when estimates of AGB are only available at the stand-level. Indeed, 671 

predictions of BGB:AGB were relatively uncertain as they include the uncertainty in both 672 

allometry-predicted BGB and AGB (Fig. 8b, Fig S2). Nonetheless, the results are of interest in 673 

demonstrating how BGB:AGB of Australian woody plants vary with size and functional type. As 674 

expected, predictions of BGB:AGB decreased with increasing D (Fig. 8a). This is consistent with 675 

the understanding that saplings invest more biomass below ground for nutrient and water 676 

acquisition to facilitate rapid early growth and survival, and with non-conductive xylem 677 

accumulating in AGB as D increases (Barton and Montagu, 2006; Poorter et al., 2012). Further, 678 
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BGB:AGB estimates were relatively high for mallee species that have lignotubers and have 679 

evolved in relatively arid environments (Paul et al., 2014), but relatively small for P. radiata trees 680 

that are established in fast-growing and fertilised plantations, with presumably relatively little 681 

investment BGB allocation (Ledo et al., 2018). 682 
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