5,704 research outputs found
The Marine Radiocarbon Reservoir Effect in Tomales Bay, California
This paper examines the marine reservoir effect for Tomales Bay, a 25.5-km-long tidal estuary along the northern coast of California. We determined the regional ∆R through radiocarbon (14C) measurements of pre-1950 shells from a museum collection as well as archaeologically recovered shell samples from a historical railroad grade of known construction date. These results are compared against four sets of paired shell and bone samples from two local archaeological sites. Our results indicate little spatial variation along the inner bay, but the proposed ∆R value is lower than those previously reported for nearby areas along the Pacific Coast. We also note potential variability in regional ∆R of approximately 200 14C years for the late Holocene, and comparison with an older paired bone and shell sample points toward more significant temporal variation earlier in tim
Influence of static electric fields on an optical ion trap
We recently reported on a proof-of-principle experiment demonstrating optical
trapping of an ion in a single-beam dipole trap superimposed by a static
electric potential [Nat. Photonics 4, 772--775 (2010)]. Here, we first discuss
the experimental procedures focussing on the influence and consequences of the
static electric potential. These potentials can easily prevent successful
optical trapping, if their configuration is not chosen carefully. Afterwards,
we analyse the dipole trap experiments with different analytic models, in which
different approximations are applied. According to these models the
experimental results agree with recoil heating as the relevant heating effect.
In addition, a Monte-Carlo simulation has been developed to refine the
analysis. It reveals a large impact of the static electric potential on the
dipole trap experiments in general. While it supports the results of the
analytic models for the parameters used in the experiments, the analytic models
cease their validity for significantly different parameters. Finally, we
propose technical improvements for future realizations of experiments with
optically trapped ions.Comment: 16 pages, 16 figure
Performance comparison of small-pixel CdZnTe radiation detectors with gold contacts formed by sputter and electroless deposition
Recent improvements in the growth of wide-bandgap semiconductors, such as cadmium zinc telluride (CdZnTe or CZT), has enabled spectroscopic X/γ-ray imaging detectors to be developed. These detectors have applications covering homeland security, industrial analysis, space science and medical imaging. At the Rutherford Appleton Laboratory (RAL) a promising range of spectroscopic, position sensitive, small-pixel Cd(Zn)Te detectors have been developed. The challenge now is to improve the quality of metal contacts on CdZnTe in order to meet the demanding energy and spatial resolution requirements of these applications. The choice of metal deposition method and fabrication process are of fundamental importance. Presented is a comparison of two CdZnTe detectors with contacts formed by sputter and electroless deposition. The detectors were fabricated with a 74 × 74 array of 200 μm pixels on a 250 μm pitch and bump-bonded to the HEXITEC ASIC. The X/γ-ray emissions from an 241Am source were measured to form energy spectra for comparison. It was found that the detector with contacts formed by electroless deposition produced the best uniformity and energy resolution; the best pixel produced a FWHM of 560 eV at 59.54 keV and 50% of pixels produced a FWHM better than 1.7 keV . This compared with a FWHM of 1.5 keV for the best pixel and 50% of pixels better than 4.4 keV for the detector with sputtered contacts
Clinical and molecular correlates in fragile X premutation females.
The prevalence of the fragile X premutation (55-200 CGG repeats) among the general population is relatively high, but there remains a lack of clear understanding of the links between molecular biomarkers and clinical outcomes. In this study we investigated the correlations between molecular measures (CGG repeat size, FMR1 mRNA, FMRP expression levels, and methylation status at the promoter region and in FREE2 site) and clinical phenotypes (anxiety, obsessive compulsive symptoms, depression and executive function deficits) in 36 adult premutation female carriers and compared to 24 normal control subjects. Premutation carriers reported higher levels of obsessive compulsive symptoms, depression, and anxiety, but demonstrated no significant deficits in global cognitive functions or executive function compared to the control group. Increased age in carriers was significantly associated with increased anxiety levels. As expected, FMR1 mRNA expression was significantly correlated with CGG repeat number. However, no significant correlations were observed between molecular (including epigenetic) measures and clinical phenotypes in this sample. Our study, albeit limited by the sample size, establishes the complexity of the mechanisms that link the FMR1 locus to the clinical phenotypes commonly observed in female carriers suggesting that other factors, including environment or additional genetic changes, may have an impact on the clinical phenotypes. However, it continues to emphasize the need for assessment and treatment of psychiatric problems in female premutation carriers
The Mid-Infrared Instrument for the James Webb Space Telescope, VIII: The MIRI Focal Plane System
We describe the layout and unique features of the focal plane system for
MIRI. We begin with the detector array and its readout integrated circuit
(combining the amplifier unit cells and the multiplexer), the electronics, and
the steps by which the data collection is controlled and the output signals are
digitized and delivered to the JWST spacecraft electronics system. We then
discuss the operation of this MIRI data system, including detector readout
patterns, operation of subarrays, and data formats. Finally, we summarize the
performance of the system, including remaining anomalies that need to be
corrected in the data pipeline
Bulk AlInAs on InP(111) as a novel material system for pure single photon emission
In this letter, we report on quantum light emission from bulk AlInAs grown on InP(111) substrates. We observe indium rich clusters in the bulk Al0:48In0:52As (AlInAs), resulting in quantum dot-like energetic traps for charge carriers, which are confirmed via cross-sectional scanning tunnelling microscopy (XSTM) measurements and 6-band k•p simulations. We observe quantum dot (QD)-like emission signals, which appear as sharp lines in our photoluminescence spectra at near infrared wavelengths around 860 nm, and with linewidths as narrow as 50 meV. We demonstrate the capability of this new material system to act as an emitter of pure single photons as we extract g(2)-values as low as g(2)/cw (0) = 0:05+0:17/-0:05 for continuous wave (cw) excitation and g (2) pulsed, corr. = 0:24 ± 0:02 for pulsed excitation.PostprintPeer reviewe
Thermotoga maritima NusG : domain interaction mediates autoinhibition and thermostability
NusG, the only universally conserved transcription factor, comprises an N- and a C-terminal domain (NTD, CTD) that are flexibly connected and move independently in Escherichia coli and other organisms. In NusG from the hyperthermophilic bacterium Thermotoga maritima (tmNusG), however, NTD and CTD interact tightly. This closed state stabilizes the CTD, but masks the binding sites for the interaction partners Rho, NusE and RNA polymerase (RNAP), suggesting that tmNusG is autoinhibited. Furthermore, tmNusG and some other bacterial NusGs have an additional domain, DII, of unknown function. Here we demonstrate that tmNusG is indeed autoinhibited and that binding to RNAP may stabilize the open conformation. We identified two interdomain salt bridges as well as Phe336 as major determinants of the domain interaction. By successive weakening of this interaction we show that after domain dissociation tmNusG-CTD can bind to Rho and NusE, similar to the Escherichia coli NusG-CTD, indicating that these interactions are conserved in bacteria. Furthermore, we show that tmNusG-DII interacts with RNAP as well as nucleic acids with a clear preference for double stranded DNA. We suggest that tmNusG-DII supports tmNusG recruitment to the transcription elongation complex and stabilizes the tmNusG:RNAP complex, a necessary adaptation to high temperatures
- …