755 research outputs found

    Engineering calculations for communications satellite systems planning

    Get PDF
    A procedure is described that was used to calculate minimum required satellite separations based on total link carrier to interference requirements. Also summarized are recent results with a switching algorithm for satellite synthesis problems. Analytic solution value bounds for two of the satellite synthesis models studied are described. Preliminary results from an empirical study of alternate mixed integer programming models for satellite synthesis are presented. Research plans for the near future are discussed

    Activity and substrate specificity of lytic polysaccharide monooxygenases: An ATR FTIR-based sensitive assay tested on a novel species from Pseudomonas putida

    Get PDF
    Pseudomonas putida W619 is a soil Gram-negative bacterium commonly used in environmental studies thanks to its ability in degrading many aromatic compounds. Its genome contains several putative carbohydrate-active enzymes such as glycoside hydrolases and lytic polysaccharide monooxygenases (PMOs). In this study, we have heterologously produced in Escherichia coli and characterized a new enzyme belonging to the AA10 family, named PpAA10 (Uniprot: B1J2U9), which contains a chitin-binding type-4 module and showed activity toward \u3b2-chitin. The active form of the enzyme was produced in E. coli exploiting the addition of a cleavable N-terminal His tag which ensured the presence of the copper-coordinating His as the first residue. Electron paramagnetic resonance spectroscopy showed signal signatures similar to those observed for the copper-binding site of chitin-cleaving PMOs. The protein was used to develop a versatile, highly sensitive, cost-effective and easy-to-apply method to detect PMO's activity exploiting attenuated total reflection-Fourier transform infrared spectroscopy and able to easily discriminate between different substrates

    Heterogeneity in the histidine-brace copper coordination sphere in auxiliary activity family 10 (AA10) lytic polysaccharide monooxygenases

    Get PDF
    Copper-dependent lytic polysaccharide monooxygenases (LPMOs) are enzymes that oxidatively deconstruct polysaccharides. The active site copper in LPMOs is coordinated by a histidine-brace. This utilizes the amino group and side chain of the N-terminal His residue with the side chain of a second His residue to create a T-shaped arrangement of nitrogen ligands. We report a structural, kinetic, and thermodynamic appraisal of copper binding to the histidine-brace in an auxiliary activity family 10 (AA10) LPMO from Streptomyces lividans (SliLPMO10E). Unexpectedly, we discovered the existence of two apo-SliLPMO10E species in solution that can each bind copper at a single site with distinct kinetic and thermodynamic (exothermic and endothermic) properties. The experimental EPR spectrum of copper-bound SliLPMO10E requires the simulation of two different line shapes, implying two different copper-bound species, indicative of three and two nitrogen ligands coordinating the copper. Amino group coordination was probed through the creation of an N-terminal extension variant (SliLPMO10E- Ext). The kinetics and thermodynamics of copper binding to SliLPMO10E-Ext are in accord with copper binding to one of the apo-forms in the wild-type protein, suggesting that amino group coordination is absent in the two-nitrogen coordinate form of SliLPMO10E. Copper binding to SliLPMO10B was also investigated, and again it revealed the presence of two apo-forms with kinetics and stoichiometry of copper binding identical to that of SliLPMO10E. Our findings highlight that heterogeneity exists in the active site copper coordination sphere of LPMOs that may have implications for the mechanism of loading copper in the cell

    The histidine brace : nature's copper alternative to haem?

    Get PDF
    The copper histidine brace is a structural unit in metalloproteins (Proc Natl Acad Sci USA 2011, 108, 15079). It consists of a copper ion chelated by the NH2 and π-N atom of an N-terminal histidine, and the τ-N atom of a further histidine, in an overall T-shaped coordination geometry (Nat Catal 2018, 1, 571). Like haem-containing proteins, histidine-brace-containing proteins have peroxygenase and/or oxygenase activity, where the substrates are notable for resistance to oxidation, for example, lytic polysaccharide monooxygenases (LPMOs). Moreover, the histidine brace is an invariant unit around which different protein structures exert different activities. Given the similarities in the diversity of function of proteins that contain either the copper histidine brace or haem, the question arises as to whether the functions of histidine brace-containing proteins duplicate those containing haem groups

    A DNA nanoswitch incorporating the fluorescent base analogue 2-aminopurine detects single nucleotide mismatches in unlabelled targets

    Get PDF
    DNA nanoswitches can be designed to detect unlabelled nucleic acid targets and have been shown to discriminate between targets which differ in the identity of only one base. This paper demonstrates that the fluorescent base analogue 2-aminopurine (AP) can be used to discriminate between nanoswitches with and without targets and to discriminate between matched and mismatched targets. In particular, we have used both steady-state and time-resolved fluorescence spectroscopy to determine differences in AP environment at the branchpoint of nanoswitches assembled using complementary targets and targets which incorporate single base mismatches

    Lignocellulose degradation mechanisms across the Tree of Life.

    Get PDF
    Organisms use diverse mechanisms involving multiple complementary enzymes, particularly glycoside hydrolases (GHs), to deconstruct lignocellulose. Lytic polysaccharide monooxygenases (LPMOs) produced by bacteria and fungi facilitate deconstruction as does the Fenton chemistry of brown-rot fungi. Lignin depolymerisation is achieved by white-rot fungi and certain bacteria, using peroxidases and laccases. Meta-omics is now revealing the complexity of prokaryotic degradative activity in lignocellulose-rich environments. Protists from termite guts and some oomycetes produce multiple lignocellulolytic enzymes. Lignocellulose-consuming animals secrete some GHs, but most harbour a diverse enzyme-secreting gut microflora in a mutualism that is particularly complex in termites. Shipworms however, house GH-secreting and LPMO-secreting bacteria separate from the site of digestion and the isopod Limnoria relies on endogenous enzymes alone. The omics revolution is identifying many novel enzymes and paradigms for biomass deconstruction, but more emphasis on function is required, particularly for enzyme cocktails, in which LPMOs may play an important role.The work of the teams at York, Portsmouth and Cambridge on development of ideas expressed in this review was supported by grants from BBSRC (BB/H531543/1, BB/L001926/1, BB/1018492/1, BB/K020358/1). The workshop was supported by a US Partnering grant from BBSRC (BB/G016208/1) to Cragg and a BBSRC/FAPESP grant to Bruce (BB/1018492/1). Watts was supported by Marie Curie FP7-RG 276948. Goodell acknowledges support from USDA Hatch Project S-1041 VA-136288. Distel acknowledges support from NSF Award IOS1442759 and NIH Award Number U19 TW008163. Beckham thanks the US Department of Energy Bioenergy Technologies Office for funding. We appreciated the hospitality of the Linnean Society in allowing us to meet in inspirational surroundings under portraits of Linnaeus, Darwin and Wallace.This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.cbpa.2015.10.01

    Structure and boosting activity of a starch-degrading lytic polysaccharide monooxygenase.

    Get PDF
    Lytic polysaccharide monooxygenases (LPMOs) are recently discovered enzymes that oxidatively deconstruct polysaccharides. LPMOs are fundamental in the effective utilization of these substrates by bacteria and fungi; moreover, the enzymes have significant industrial importance. We report here the activity, spectroscopy and three-dimensional structure of a starch-active LPMO, a representative of the new CAZy AA13 family. We demonstrate that these enzymes generate aldonic acid-terminated malto-oligosaccharides from retrograded starch and boost significantly the conversion of this recalcitrant substrate to maltose by β-amylase. The detailed structure of the enzyme's active site yields insights into the mechanism of action of this important class of enzymes.This work was supported by a grant from the European Research Agency—Industrial Biotechnology Initiative as financed by the national research councils: Biotechnology and Biological Sciences Research Council (grant number BB/L000423) and Agence Française de l'Environnement et de la Maîtrise de l'Energie (grant number 1201C102). The Danish Council for Strategic Research (grant numbers 12-134923 and 12-134922). The Danish Ministry of Higher Education and Science through the Instrument Center DANSCATT and the European Community’s Seventh Framework Programme (FP7/2007-2013) under BioStruct-X (grant agreement N°283570) funded travel to synchrotrons. P.H.W. acknowledges the experimental assistance of Rebecca Gregory and Dr Victor Chechik. L.L.L. acknowledges the experimental assistance of Dorthe Boelskifte and the ESRF and MAXLAB staff for assistance with data collection.This is the final version of the article. It first appeared from NPG via http://dx.doi.org/10.1038/ncomms696
    • …
    corecore