62 research outputs found

    CAMERA: A Community Resource for Metagenomics

    Get PDF
    The CAMERA (Cyberinfrastructure for Advanced Marine Microbial Ecology Research and Analysis) community database for metagenomic data deposition is an important first step in developing methods for monitoring microbial communities

    Meeting Report from the Genomic Standards Consortium (GSC) Workshops 6 and 7

    Get PDF
    This report summarizes the proceedings of the 6th and 7th workshops of the Genomic Standards Consortium (GSC), held back-to-back in 2008. GSC 6 focused on furthering the activities of GSC working groups, GSC 7 focused on outreach to the wider community. GSC 6 was held October 10-14, 2008 at the European Bioinformatics Institute, Cambridge, United Kingdom and included a two-day workshop focused on the refinement of the Genomic Contextual Data Markup Language (GCDML). GSC 7 was held as the opening day of the International Congress on Metagenomics 2008 in San Diego California. Major achievements of these combined meetings included an agreement from the International Nucleotide Sequence Database Consortium (INSDC) to create a “MIGS” keyword for capturing ”Minimum Information about a Genome Sequence” compliant information within INSDC (DDBJ/EMBL /Genbank) records, launch of GCDML 1.0, MIGS compliance of the first set of “Genomic Encyclopedia of Bacteria and Archaea” project genomes, approval of a proposal to extend MIGS to 16S rRNA sequences within a “Minimum Information about an Environmental Sequence”, finalization of plans for the GSC eJournal, “Standards in Genomic Sciences” (SIGS), and the formation of a GSC Board. Subsequently, the GSC has been awarded a Research Co-ordination Network (RCN4GSC) grant from the National Science Foundation, held the first SIGS workshop and launched the journal. The GSC will also be hosting outreach workshops at both ISMB 2009 and PSB 2010 focused on “Metagenomics, Metadata and MetaAnalysis” (M3). Further information about the GSC and its range of activities can be found at http://gensc.org, including videos of all the presentations at GSC 7

    Identification of ribosomal RNA genes in metagenomic fragments

    Get PDF
    Motivation: Identification of genes coding for ribosomal RNA (rRNA) is considered an important goal in the analysis of data from metagenomics projects. Here, we report the development of a software program designed for the identification of rRNA genes from metagenomic fragments based on hidden Markov models (HMMs). This program provides rRNA gene predictions with high sensitivity and specificity on artificially fragmented genomic DNAs

    Complete Genomic Characterization of a Pathogenic A.II Strain of Francisella tularensis Subspecies tularensis

    Get PDF
    Francisella tularensis is the causative agent of tularemia, which is a highly lethal disease from nature and potentially from a biological weapon. This species contains four recognized subspecies including the North American endemic F. tularensis subsp. tularensis (type A), whose genetic diversity is correlated with its geographic distribution including a major population subdivision referred to as A.I and A.II. The biological significance of the A.I – A.II genetic differentiation is unknown, though there are suggestive ecological and epidemiological correlations. In order to understand the differentiation at the genomic level, we have determined the complete sequence of an A.II strain (WY96-3418) and compared it to the genome of Schu S4 from the A.I population. We find that this A.II genome is 1,898,476 bp in size with 1,820 genes, 1,303 of which code for proteins. While extensive genomic variation exists between “WY96” and Schu S4, there is only one whole gene difference. This one gene difference is a hypothetical protein of unknown function. In contrast, there are numerous SNPs (3,367), small indels (1,015), IS element differences (7) and large chromosomal rearrangements (31), including both inversions and translocations. The rearrangement borders are frequently associated with IS elements, which would facilitate intragenomic recombination events. The pathogenicity island duplicated regions (DR1 and DR2) are essentially identical in WY96 but vary relative to Schu S4 at 60 nucleotide positions. Other potential virulence-associated genes (231) varied at 559 nucleotide positions, including 357 non-synonymous changes. Molecular clock estimates for the divergence time between A.I and A.II genomes for different chromosomal regions ranged from 866 to 2131 years before present. This paper is the first complete genomic characterization of a member of the A.II clade of Francisella tularensis subsp. tularensis

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    • 

    corecore