2,809 research outputs found

    Low temperature characterization of modulation doped SiGe grown on bonded silicon-on-insulator

    Get PDF
    Modulation doped pseudomorphic Si0.87Ge0.13 strained quantum wells were grown on bonded silicon-on-insulator (SOI) substrates. Comparison with similar structures grown on bulk Si(100) wafers shows that the SOI material has higher mobility at low temperatures with a maximum value of 16 810 cm 2/V s for 2.05 × 1011 cm – 2 carries at 298 mK. Effective masses obtained from the temperature dependence of Shubnikov–de Haas oscillations have a value of (0.27 ± 0.02) m0 compared to (0.23 ± 0.02) m0 for quantum wells on Si(100) while the cyclotron resonance effective masses obtained at higher magnetic fields without consideration for nonparabolicity effects have values between 0.25 and 0.29 m0. Ratios of the transport and quantum lifetimes, tau/tau q=2.13 ± 0.10, were obtained for the SOI material that are, we believe, the highest reported for any pseudomorphic SiGe modulation doped structure and demonstrates that there is less interface roughness or charge scattering in the SOI material than in metal–oxide–semiconductor field effect transistors or other pseudomorphic SiGe modulation doped quantum wells

    Myeloid DAP12-associating lectin (MDL)-1 regulates synovial inflammation and bone erosion associated with autoimmune arthritis.

    Get PDF
    DNAX adaptor protein 12 (DAP12) is a trans-membrane adaptor molecule that transduces activating signals in NK and myeloid cells. Absence of functional Dap12 results in osteoclast defects and bone abnormalities. Because DAP12 has no extracelluar binding domains, it must pair with cell surface receptors for signal transduction. There are at least 15 known DAP12-associating cell surface receptors with distinct temporal and cell type-specific expression patterns. Our aim was to determine which receptors may be important in DAP12-associated bone pathologies. Here, we identify myeloid DAP12-associating lectin (MDL)-1 receptor (also known as CLEC5A) as a key regulator of synovial injury and bone erosion during autoimmune joint inflammation. Activation of MDL-1 leads to enhanced recruitment of inflammatory macrophages and neutrophils to the joint and promotes bone erosion. Functional blockade of MDL-1 receptor via Mdl1 deletion or treatment with MDL-1-Ig fusion protein reduces the clinical signs of autoimmune joint inflammation. These findings suggest that MDL-1 receptor may be a therapeutic target for treatment of immune-mediated skeletal disorders

    Toy articles of manufacture comprising spontaneously wettable fibers

    Get PDF
    This invention relates to an article of manufacture consisting of a toy having a plurality of synthetic fibers capable of spontaneously transporting water on the surface thereof, said fibers satisfying the following equation wherein .theta..sub.a is the advancing contact angle of water measured on a flat film made from the same material as the fiber and having the same surface treatment, if any, X is a shape factor of the fiber cross-section that satisfies the following equation ##EQU1## wherein P.sub.w is the wetted perimeter of the fiber and r is the radius of the circumscribed circle circumscribing the fiber cross-section and D is the minor axis dimension across the fiber cross-section

    Role of the mesoamygdaloid dopamine projection in emotional learning

    Get PDF
    Amygdala dopamine is crucially involved in the acquisition of Pavlovian associations, as measured via conditioned approach to the location of the unconditioned stimulus (US). However, learning begins before skeletomotor output, so this study assessed whether amygdala dopamine is also involved in earlier 'emotional' learning. A variant of the conditioned reinforcement (CR) procedure was validated where training was restricted to curtail the development of selective conditioned approach to the US location, and effects of amygdala dopamine manipulations before training or later CR testing assessed. Experiment 1a presented a light paired (CS+ group) or unpaired (CS- group) with a US. There were 1, 2 or 10 sessions, 4 trials per session. Then, the US was removed, and two novel levers presented. One lever (CR+) presented the light, and lever pressing was recorded. Experiment 1b also included a tone stimulus. Experiment 2 applied intra-amygdala R(+) 7-OH-DPAT (10 nmol/1.0 A mu l/side) before two training sessions (Experiment 2a) or a CR session (Experiment 2b). For Experiments 1a and 1b, the CS+ group preferred the CR+ lever across all sessions. Conditioned alcove approach during 1 or 2 training sessions or associated CR tests was low and nonspecific. In Experiment 2a, R(+) 7-OH-DPAT before training greatly diminished lever pressing during a subsequent CR test, preferentially on the CR+ lever. For Experiment 2b, R(+) 7-OH-DPAT infusions before the CR test also reduced lever pressing. Manipulations of amygdala dopamine impact the earliest stage of learning in which emotional reactions may be most prevalent

    Interwell relaxation times in p-Si/SiGe asymmetric quantum well structures: the role of interface roughness

    Get PDF
    We report the direct determination of nonradiative lifetimes in Si∕SiGe asymmetric quantum well structures designed to access spatially indirect (diagonal) interwell transitions between heavy-hole ground states, at photon energies below the optical phonon energy. We show both experimentally and theoretically, using a six-band k∙p model and a time-domain rate equation scheme, that, for the interface quality currently achievable experimentally (with an average step height ⩾1 Å), interface roughness will dominate all other scattering processes up to about 200 K. By comparing our results obtained for two different structures we deduce that in this regime both barrier and well widths play an important role in the determination of the carrier lifetime. Comparison with recently published experimental and theoretical data obtained for mid-infrared GaAs∕AlxGa1−xAs multiple quantum well systems leads us to the conclusion that the dominant role of interface roughness scattering at low temperature is a general feature of a wide range of semiconductor heterostructures not limited to IV-IV material

    The properties of extragalactic radio sources selected at 20 GHz

    Full text link
    We present some first results on the variability, polarization and general properties of radio sources selected in a blind survey at 20 GHz, the highest frequency at which a sensitive radio survey has been carried out over a large area of sky. Sources with flux densities above 100 mJy in the AT20G Pilot Survey at declination -60 to -70 were observed at up to three epochs during 2002-4, including near-simultaneous measurements at 5, 8 and 18 GHz in 2003. Of the 173 sources detected, 65% are candidate QSOs, BL Lac objects or blazars, 20% galaxies and 15% faint (b > 22 mag) optical objects or blank fields. On a 1-2 year timescale, the general level of variability at 20 GHz appears to be low. For the 108 sources with good-quality measurements in both 2003 and 2004, the median variability index at 20 GHz was 6.9% and only five sources varied by more than 30% in flux density. Most sources in our sample show low levels of linear polarization (typically 1-5%), with a median fractional polarization of 2.3% at 20 GHz. There is a trend for fainter sources to show higher fractional polarization. At least 40% of sources selected at 20GHz have strong spectral curvature over the frequency range 1-20 GHz. We use a radio `two-colour diagram' to characterize the radio spectra of our sample, and confirm that the radio-source population at 20 GHz (which is also the foreground point-source population for CMB anisotropy experiments like WMAP and Planck) cannot be reliably predicted by extrapolating the results of surveys at lower frequencies. As a result, direct selection at 20 GHz appears to be a more efficient way of identifying 90 GHz phase calibrators for ALMA than the currently-proposed technique of extrapolation from all-sky surveys at 1-5 GHz.Comment: 14-page paper plus 5-page data table. Replaced with published versio

    The Australia Telescope 20GHz (AT20G) Survey: analysis of the extragalactic source sample

    Get PDF
    The Australia Telescope 20 GHz (AT20G) survey is a blind survey of the whole Southern sky at 20 GHz with follow-up observations at 4.8, 8.6, and 20 GHz carried out with the Australia Telescope Compact Array (ATCA). In this paper we present an analysis of radio spectral properties in total intensity and polarisation, sizes, optical identifications, and redshifts of the sample of the 5808 extragalactic sources in the survey catalogue of confirmed sources over the whole Southern sky excluding the strip at Galactic latitude |b|<1.5deg. The sample has a flux density limit of 40 mJy. Completeness has been measured as a function of scan region and flux density. Averaging over the whole survey area the follow-up survey is 78% complete above 50mJy and 93% complete above 100mJy. 3332 sources with declination <-15deg have good quality almost simultaneous observations at 4.8, 8.6, and 20GHz. The spectral analysis shows that the sample is dominated by flat-spectrum sources. The fraction of flat-spectrum sources decreases from 81% for 20GHz flux densities S>500mJy, to 60% for S<100mJy. There is also a clear spectral steepening at higher frequencies with the median spectral index decreasing from -0.16 between 4.8 and 8.6GHz to -0.28 between 8.6 and 20GHz. Simultaneous observations in polarisation are available for all the sources at all the frequencies. 768 sources have a good quality detection of polarised flux density at 20GHz; 467 of them were also detected in polarisation at 4.8 and/or at 8.6GHz so that it has been possible to compare the spectral behaviour in total intensity and polarisation. We have found that the polarised fraction increases slightly with frequency and decreases with flux density. Cross matches and comparisons have been made with other catalogues at lower radio frequencies, and in the optical, X-ray and gamma-ray bands. Redshift estimates are available for 825 sources.Comment: 15 pages, 16 figures, accepted for publication in MNRA

    Direct-Pathway Striatal Neurons Regulate the Retention of Decision-Making Strategies

    Get PDF
    The dorsal striatum has been implicated in reward-based decision making, but the role played by specific striatal circuits in these processes is essentially unknown. Using cell phenotype-specific viral vectors to express engineered G-protein-coupled DREADD (designer receptors exclusively activated by designer drugs) receptors, we enhanced G(i/o)- or G(s)-protein-mediated signaling selectively in direct-pathway (striatonigral) neurons of the dorsomedial striatum in Long–Evans rats during discrete periods of training of a high versus low reward-discrimination task. Surprisingly, these perturbations had no impact on reward preference, task performance, or improvement of performance during training. However, we found that transiently increasing G(i/o) signaling during training significantly impaired the retention of task strategies used to maximize reward obtainment during subsequent preference testing, whereas increasing G(s) signaling produced the opposite effect and significantly enhanced the encoding of a high-reward preference in this decision-making task. Thus, the fact that the endurance of this improved performance was significantly altered over time—long after these neurons were manipulated—indicates that it is under bidirectional control of canonical G-protein-mediated signaling in striatonigral neurons during training. These data demonstrate that cAMP-dependent signaling in direct-pathway neurons play a well-defined role in reward-related behavior; that is, they modulate the plasticity required for the retention of task-specific information that is used to improve performance on future renditions of the task
    corecore