80 research outputs found

    Variable features in the Valles Marineris region of Mars

    Get PDF
    Transient phenomena on Mars have long been recognized in Mariner and Viking images as well as in decades of Earth based telescopic observations. These events are of interest because of the information they present on currently active meteorological and geological processes. Changes in surface albedo patterns and atmospheric conditions can also affect the analysis and interpretation of data based on spectral or morphological properties of geologic units on the surface. The mechanism responsible for albedo pattern change is currently under investigation. Generation and subsequent transportation and deposition of dark sands has been interpreted in the Valles. However, the removal of a bright dust layer is more consistent with the rapid time period of the change (about two months) and with preliminary multispectral mapping results which suggest that the dark streak south of Eos and Coprates Chasmata is spectrally distinguishable from the dark saltating materials found elsewhere in the canyon system. If a layer of bright dust was removed to affect the albedo change, questions concerning how such micron-sized particles are mobilized by the winds during a normally quiescent season (Southern Hemisphere Autumn) should be addressed

    Overview of Spirit Microscopic Imager Results

    Get PDF
    This paper provides an overview of Mars Exploration Rover Spirit Microscopic Imager (MI) operations and the calibration, processing, and analysis of MI data. The focus of this overview is on the last five Earth years (2005-2010) of Spirit's mission in Gusev crater, supplementing the previous overview of the first 450 sols of the Spirit MI investigation. Updates to radiometric calibration using in-flight data and improvements in high-level processing are summarized. Released data products are described, and a table of MI observations, including target/feature names and associated data sets, is appended. The MI observed natural and disturbed exposures of rocks and soils as well as magnets and other rover hardware. These hand-lens-scale observations have provided key constraints on interpretations of the formation and geologic history of features, rocks, and soils examined by Spirit. MI images complement observations by other Spirit instruments, and together show that impact and volcanic processes have dominated the origin and evolution of the rocks in Gusev crater, with aqueous activity indicated by the presence of silica-rich rocks and sulfate-rich soils. The textures of some of the silica-rich rocks are similar to terrestrial hot spring deposits, and observations of subsurface cemented layers indicate recent aqueous mobilization of sulfates in places. Wind action has recently modified soils and abraded many of the rocks imaged by the MI, as observed at other Mars landing sites. Plain Language Summary The Microscopic Imager (MI) on NASA's Spirit rover returned the highest-resolution images of the Martian surface available at the time of the 2004-2010 mission. Designed to survive 90 Mars days (sols) and search for evidence of water in the past, Spirit returned data for 2210 sols, far exceeding all expectations. This paper summarizes the scientific insights gleaned from the thousands of MI images acquired during the last 5years of the mission, supplementing the summary of the first 450 sols of the Spirit MI investigation published previously (Herkenhoff et al., ). Along with data from the other instruments on Spirit, MI images guided the scientific interpretation of the geologic history of the rocks and soils observed in Gusev crater on Mars. We conclude that the geologic history of the area explored by Spirit has been dominated by impacts and volcanism, and that water, perhaps very hot water, was involved in the evolution of some of the rocks and soils. More recently, winds have moved soil particles and abraded rocks, as observed elsewhere on Mars. These results have improved our understanding of Mars' history and informed planning of future missions to Mars.National Aeronautics and Space AdministrationPublic domain articleThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Metastability in pressure-induced structural transformations of CdSe/ZnS core/shell nanocrystals

    Full text link
    The kinetics and thermodynamics of structural transformations under pressure depend strongly on particle size due to the influence of surface free energy. By suitable design of surface structure, composition, and passivation it is possible, in principle, to prepare nanocrystals in structures inaccessible to bulk materials. However, few realizations of such extreme size-dependent behavior exist. Here we show with molecular dynamics computer simulation that in a model of CdSe/ZnS core/shell nanocrystals the core high pressure structure can be made metastable under ambient conditions by tuning the thickness of the shell. In nanocrystals with thick shells, we furthermore observe a wurtzite to NiAs transformation, which does not occur in the pure bulk materials. These phenomena are linked to a fundamental change in the atomistic transformation mechanism from heterogenous nucleation at the surface to homogenous nucleation in the crystal core. Our results suggest a new route towards expanding the range of available nanoscale materials

    'Rumours' and clinical trials: a retrospective examination of a paediatric malnutrition study in Zambia, southern Africa

    Get PDF
    BACKGROUND: Many public health researchers conducting studies in resource-constrained settings have experienced negative 'rumours' about their work; in some cases they have been reported to create serious challenges and derail studies. However, what may appear superficially as 'gossip' or 'rumours' can also be regarded and understood as metaphors which represent local concerns. For researchers unaccustomed to having concerns expressed from participants in this manner, possible reactions can be to be unduly perturbed or conversely dismissive.This paper represents a retrospective examination of a malnutrition study conducted by an international team of researchers in Zambia, Southern Africa. The fears of mothers whose children were involved in the study and some of the concerns which were expressed as rumours are also presented. This paper argues that there is an underlying logic to these anxieties and to dismiss them simply as 'rumours' or 'gossip' would be to overlook the historic and socio-economic factors which have contributed to their production. METHODS: Qualitative interviews were conducted with the mothers whose children were involved in the study and with the research nurses. Twenty five face-to-face interviews and 2 focus group discussions (FGDs) were conducted with mothers. In addition, face-to-face interviews were conducted with research nurses participating in the trial. RESULTS: A prominent anxiety expressed as rumours by the mothers whose children were involved in the study was that recruitment into the trial was an indicator that the child was HIV-infected. Other anxieties included that the trial was a disguise for witchcraft or Satanism and that the children's body parts would be removed and sold. In addition, the liquid, milk-based food given to the children to improve their nutrition was suspected of being insufficiently nutritious, thus worsening their condition.The form which these anxieties took, such as rumours related to the stealing of body parts and other anxieties about a stigmatised condition, provide an insight into the historical, socio-economic and cultural influences in such settings. CONCLUSIONS: Employing strategies to understand local concerns should accompany research aims to achieve optimal success. The concerns raised by the participants we interviewed are not unique to this study. They are produced in countries where the historic, socio-economic and cultural settings communicate anxieties in this format. By examining this study we have shown that by contextualizing these 'rumours', the concerns they express can be constructively addressed and in turn result in the successful conduct of research aims

    SBDS Expression and Localization at the Mitotic Spindle in Human Myeloid Progenitors

    Get PDF
    BACKGROUND: Shwachman-Diamond Syndrome (SDS) is a hereditary disease caused by mutations in the SBDS gene. SDS is clinically characterized by pancreatic insufficiency, skeletal abnormalities and bone marrow dysfunction. The hematologic abnormalities include neutropenia, neutrophil chemotaxis defects, and an increased risk of developing Acute Myeloid Leukemia (AML). Although several studies have suggested that SBDS as a protein plays a role in ribosome processing/maturation, its impact on human neutrophil development and function remains to be clarified. METHODOLOGY/PRINCIPAL FINDINGS: We observed that SBDS RNA and protein are expressed in the human myeloid leukemia PLB-985 cell line and in human hematopoietic progenitor cells by quantitative RT-PCR and Western blot analysis. SBDS expression is downregulated during neutrophil differentiation. Additionally, we observed that the differentiation and proliferation capacity of SDS-patient bone marrow hematopoietic progenitor cells in a liquid differentiation system was reduced as compared to control cultures. Immunofluorescence analysis showed that SBDS co-localizes with the mitotic spindle and in vitro binding studies reveal a direct interaction of SBDS with microtubules. In interphase cells a perinuclear enrichment of SBDS protein which co-localized with the microtubule organizing center (MTOC) was observed. Also, we observed that transiently expressed SDS patient-derived SBDS-K62 or SBDS-C84 mutant proteins could co-localize with the MTOC and mitotic spindle. CONCLUSIONS/SIGNIFICANCE: SBDS co-localizes with the mitotic spindle, suggesting a role for SBDS in the cell division process, which corresponds to the decreased proliferation capacity of SDS-patient bone marrow CD34(+) hematopoietic progenitor cells in our culture system and also to the neutropenia in SDS patients. A role in chromosome missegregation has not been clarified, since similar spatial and time-dependent localization is observed when patient-derived SBDS mutant proteins are studied. Thus, the increased risk of myeloid malignancy in SDS remains unexplained

    Biosorption and Biomineralization of U(VI) by the Marine Bacterium Idiomarina loihiensis MAH1: Effect of Background Electrolyte and pH

    Get PDF
    The main goal of this study is to compare the effects of pH, uranium concentration, and background electrolyte (seawater and NaClO4 solution) on the speciation of uranium(VI) associated with the marine bacterium Idiomarina loihiensis MAH1. This was done at the molecular level using a multidisciplinary approach combining X-ray Absorption Spectroscopy (XAS), Time-Resolved Laser-Induced Fluorescence Spectroscopy (TRLFS), and High Resolution Transmission Electron Microscopy (HRTEM). We showed that the U(VI)/bacterium interaction mechanism is highly dependent upon pH but also the nature of the used background electrolyte played a role. At neutral conditions and a U concentration ranging from 5·10−4 to 10−5 M (environmentally relevant concentrations), XAS analysis revealed that uranyl phosphate mineral phases, structurally resembling meta-autunite [Ca(UO2)2(PO4)2 2–6H2O] are precipitated at the cell surfaces of the strain MAH1. The formation of this mineral phase is independent of the background solution but U(VI) luminescence lifetime analyses demonstrated that the U(VI) speciation in seawater samples is more intricate, i.e., different complexes were formed under natural conditions. At acidic conditions, pH 2, 3 and 4.3 ([U] = 5·10−4 M, background electrolyte = 0.1 M NaClO4), the removal of U from solution was due to biosorption to Extracellular Polysaccharides (EPS) and cell wall components as evident from TEM analysis. The LIII-edge XAS and TRLFS studies showed that the biosorption process observed is dependent of pH. The bacterial cell forms a complex with U through organic phosphate groups at pH 2 and via phosphate and carboxyl groups at pH 3 and 4.3, respectively. The differences in the complexes formed between uranium and bacteria on seawater compared to NaClO4 solution demonstrates that the actinide/microbe interactions are influenced by the three studied factors, i.e., the pH, the uranium concentration and the chemical composition of the solution.This work was funded by the grants CGL2009-09760 and CGL2012-36505 (Ministerio de Ciencia e Innovación), and RNM 3943 (Junta de Andalucía), Spain

    Pre-Clinical Evaluation of a Novel Nanoemulsion-Based Hepatitis B Mucosal Vaccine

    Get PDF
    Hepatitis B virus infection remains an important global health concern despite the availability of safe and effective prophylactic vaccines. Limitations to these vaccines include requirement for refrigeration and three immunizations thereby restricting use in the developing world. A new nasal hepatitis B vaccine composed of recombinant hepatitis B surface antigen (HBsAg) in a novel nanoemulsion (NE) adjuvant (HBsAg-NE) could be effective with fewer administrations.Physical characterization indicated that HBsAg-NE consists of uniform lipid droplets (349+/-17 nm) associated with HBsAg through electrostatic and hydrophobic interactions. Immunogenicity of HBsAg-NE vaccine was evaluated in mice, rats and guinea pigs. Animals immunized intranasally developed robust and sustained systemic IgG, mucosal IgA and strong antigen-specific cellular immune responses. Serum IgG reached > or = 10(6) titers and was comparable to intramuscular vaccination with alum-adjuvanted vaccine (HBsAg-Alu). Normalization showed that HBsAg-NE vaccination correlates with a protective immunity equivalent or greater than 1000 IU/ml. Th1 polarized immune response was indicated by IFN-gamma and TNF-alpha cytokine production and elevated levels of IgG(2) subclass of HBsAg-specific antibodies. The vaccine retains full immunogenicity for a year at 4 degrees C, 6 months at 25 degrees C and 6 weeks at 40 degrees C. Comprehensive pre-clinical toxicology evaluation demonstrated that HBsAg-NE vaccine is safe and well tolerated in multiple animal models.Our results suggest that needle-free nasal immunization with HBsAg-NE could be a safe and effective hepatitis B vaccine, or provide an alternative booster administration for the parenteral hepatitis B vaccines. This vaccine induces a Th1 associated cellular immunity and also may provide therapeutic benefit to patients with chronic hepatitis B infection who lack cellular immune responses to adequately control viral replication. Long-term stability of this vaccine formulation at elevated temperatures suggests a direct advantage in the field, since potential excursions from cold chain maintenance could be tolerated without a loss in therapeutic efficacy
    corecore