11 research outputs found
On the Morphology and Chemical Composition of the HR 4796A Debris Disk
[abridged] We present resolved images of the HR 4796A debris disk using the
Magellan adaptive optics system paired with Clio-2 and VisAO. We detect the
disk at 0.77 \microns, 0.91 \microns, 0.99 \microns, 2.15 \microns, 3.1
\microns, 3.3 \microns, and 3.8 \microns. We find that the deprojected center
of the ring is offset from the star by 4.761.6 AU and that the deprojected
eccentricity is 0.060.02, in general agreement with previous studies. We
find that the average width of the ring is 14, also comparable to
previous measurements. Such a narrow ring precludes the existence of
shepherding planets more massive than \about 4 \mj, comparable to hot-start
planets we could have detected beyond \about 60 AU in projected separation.
Combining our new scattered light data with archival HST/STIS and HST/NICMOS
data at \about 0.5-2 \microns, along with previously unpublished Spitzer/MIPS
thermal emission data and all other literature thermal data, we set out to
constrain the chemical composition of the dust grains. After testing 19
individual root compositions and more than 8,400 unique mixtures of these
compositions, we find that good fits to the scattered light alone and thermal
emission alone are discrepant, suggesting that caution should be exercised if
fitting to only one or the other. When we fit to both the scattered light and
thermal emission simultaneously, we find mediocre fits (reduced chi-square
\about 2). In general, however, we find that silicates and organics are the
most favored, and that water ice is usually not favored. These results suggest
that the common constituents of both interstellar dust and solar system comets
also may reside around HR 4796A, though improved modeling is necessary to place
better constraints on the exact chemical composition of the dust.Comment: Accepted to ApJ on October 27, 2014. 21 pages, 12 figures, 4 table
MagAO Imaging of Long-period Objects (MILO). I. A Benchmark M Dwarf Companion Exciting a Massive Planet around the Sun-like Star HD 7449
We present high-contrast Magellan adaptive optics (MagAO) images of HD 7449,
a Sun-like star with one planet and a long-term radial velocity (RV) trend. We
unambiguously detect the source of the long-term trend from 0.6-2.15 \microns
~at a separation of \about 0\fasec 54. We use the object's colors and spectral
energy distribution to show that it is most likely an M4-M5 dwarf (mass \about
0.1-0.2 \msun) at the same distance as the primary and is therefore likely
bound. We also present new RVs measured with the Magellan/MIKE and PFS
spectrometers and compile these with archival data from CORALIE and HARPS. We
use a new Markov chain Monte Carlo procedure to constrain both the mass ( \msun ~at 99 confidence) and semimajor axis (\about 18 AU) of the M
dwarf companion (HD 7449B). We also refine the parameters of the known massive
planet (HD 7449Ab), finding that its minimum mass is
\mj, its semimajor axis is AU, and its eccentricity is
. We use N-body simulations to constrain the eccentricity
of HD 7449B to 0.5. The M dwarf may be inducing Kozai oscillations
on the planet, explaining its high eccentricity. If this is the case and its
orbit was initially circular, the mass of the planet would need to be
1.5 \mj. This demonstrates that strong constraints on known planets
can be made using direct observations of otherwise undetectable long-period
companions.Comment: Corrected planet mass error (7.8 Mj --> 1.09 Mj, in agreement with
previous studies
MagAO Imaging of Long-period Objects (MILO). II. A Puzzling White Dwarf around the Sun-like Star HD 11112
The version of record, Rodigas, T. J. et al, 'MagAO Imaging of long-period objects (MILO). II. A puzzling white dwarf around the sun-like star HD 11112', The Astrophysical Journal, 831:177, November 2016, is available online via doi: 10.3847/0004-637X/831/2/177 © 2016. The American Astronomical Society. All rights reserved.HD 11112 is an old, Sun-like star that has a long-term radial velocity (RV) trend indicative of a massive companion on a wide orbit. Here we present direct images of the source responsible for the trend using the Magellan Adaptive Optics system. We detect the object (HD 11112B) at a separation of 2\fasec 2 (100 AU) at multiple wavelengths spanning 0.6-4 \microns ~and show that it is most likely a gravitationally-bound cool white dwarf. Modeling its spectral energy distribution (SED) suggests that its mass is 0.9-1.1 \msun, which corresponds to very high-eccentricity, near edge-on orbits from Markov chain Monte Carlo analysis of the RV and imaging data together. The total age of the white dwarf is discrepant with that of the primary star under most assumptions. The problem can be resolved if the white dwarf progenitor was initially a double white dwarf binary that then merged into the observed high-mass white dwarf. HD 11112B is a unique and intriguing benchmark object that can be used to calibrate atmospheric and evolutionary models of cool white dwarfs and should thus continue to be monitored by RV and direct imaging over the coming years.Peer reviewedFinal Published versio