195 research outputs found
Toward CP-even Neutrino Beam
The best method of measuring CP violating effect in neutrino oscillation
experiments is to construct and use a neutrino beam made of an ideal mixture of
and of monochromatic lines. The conceptual design of such
a beam is described, together with how to measure the CP-odd quantity. We
propose to exploit an accelerated unstable hydrogen-like heavy ion in a storage
ring, whose decay has both electron capture and bound beta decay with a
comparable fraction.Comment: 6 pages, 2 figures, Published versio
Effect of differences in proton and neutron density distributions on fission barriers
The neutron and proton density distributions obtained in constrained
Hartree-Fock-Bogolyubov calculations with the Gogny force along the fission
paths of 232Th, 236U, 238U and 240Pu are analyzed.
Significant differences in the multipole deformations of neutron and proton
densities are found. The effect on potential energy surfaces and on barrier
heights of an additional constraint imposing similar spatial distributions to
neutrons and protons, as assumed in macroscopic-microscopic models, is studied.Comment: 5 pages in Latex, 4 figures in ep
Isospin Dependence in the Odd-Even Staggering of Nuclear Binding Energies
The FRS-ESR facility at GSI provides unique conditions for precision
measurements of large areas on the nuclear mass surface in a single experiment.
Values for masses of 604 neutron-deficient nuclides (30<=Z<=92) were obtained
with a typical uncertainty of 30 microunits. The masses of 114 nuclides were
determined for the first time. The odd-even staggering (OES) of nuclear masses
was systematically investigated for isotopic chains between the proton shell
closures at Z=50 and Z=82. The results were compared with predictions of modern
nuclear models. The comparison revealed that the measured trend of OES is not
reproduced by the theories fitted to masses only. The spectral pairing gaps
extracted from models adjusted to both masses, and density related observables
of nuclei agree better with the experimental data.Comment: Physics Review Letters 95 (2005) 042501
http://link.aps.org/abstract/PRL/v95/e04250
Systematics of Fission Barriers in Superheavy Elements
We investigate the systematics of fission barriers in superheavy elements in
the range Z = 108-120 and N = 166-182. Results from two self-consistent models
for nuclear structure, the relativistic mean-field (RMF) model as well as the
non-relativistic Skyrme-Hartree-Fock approach are compared and discussed. We
restrict ourselves to axially symmetric shapes, which provides an upper bound
on static fission barriers. We benchmark the predictive power of the models
examining the barriers and fission isomers of selected heavy actinide nuclei
for which data are available. For both actinides and superheavy nuclei, the RMF
model systematically predicts lower barriers than most Skyrme interactions. In
particular the fission isomers are predicted too low by the RMF, which casts
some doubt on recent predictions about superdeformed ground states of some
superheavy nuclei. For the superheavy nuclei under investigation, fission
barriers drop to small values around Z = 110, N = 180 and increase again for
heavier systems. For most of the forces, there is no fission isomer for
superheavy nuclei, as superdeformed states are in most cases found to be
unstable with respect to octupole distortions.Comment: 17 pages REVTEX, 12 embedded eps figures. corrected abstrac
First Measurement of Pure Electron Shakeoff in the β Decay of Trapped 6He+ Ions
Expérience GANIL/SPIRAL/LIRATThe electron shakeoff probability of 6Li2+ ions resulting from the β- decay of 6He+ ions has been measured with high precision using a specially designed recoil ion spectrometer. This is the first measurement of a pure electron shakeoff following nuclear β decay, not affected by multielectron processes such as Auger cascades. In this ideal textbook case for the application of the sudden approximation, the experimental ionization probability was found to be Psoexp=0.023 39(36) in perfect agreement with simple quantum mechanical calculations
Direct observation of long-lived isomers in Bi
Long-lived isomers in 212Bi have been studied following 238U projectile
fragmentation at 670 MeV per nucleon. The fragmentation products were injected
as highly charged ions into the GSI storage ring, giving access to masses and
half-lives. While the excitation energy of the first isomer of 212Bi was
confirmed, the second isomer was observed at 1478(30) keV, in contrast to the
previously accepted value of >1910 keV. It was also found to have an extended
Lorentz-corrected in-ring halflife >30 min, compared to 7.0(3) min for the
neutral atom. Both the energy and half-life differences can be understood as
being due a substantial, though previously unrecognised, internal decay branch
for neutral atoms. Earlier shell-model calculations are now found to give good
agreement with the isomer excitation energy. Furthermore, these and new
calculations predict the existence of states at slightly higher energy that
could facilitate isomer de-excitation studies.Comment: published in PRL 110, 12250
Schottky mass measurements of heavy neutron-rich nuclides in the element range 70\leZ \le79 at the ESR
Storage-ring mass spectrometry was applied to neutron-rich Au
projectile fragments. Masses of Lu, Hf, Ta,
W, and Re nuclei were measured for the first time. The
uncertainty of previously known masses of W and Os nuclei
was improved. Observed irregularities on the smooth two-neutron separation
energies for Hf and W isotopes are linked to the collectivity phenomena in the
corresponding nuclei.Comment: 10 pages, 9 figures, 2 table
Theoretical Aspects of Science with Radioactive Nuclear Beams
Physics of radioactive nuclear beams is one of the main frontiers of nuclear
science today. Experimentally, thanks to technological developments, we are on
the verge of invading the territory of extreme N/Z ratios in an unprecedented
way. Theoretically, nuclear exotica represent a formidable challenge for the
nuclear many-body theories and their power to predict nuclear properties in
nuclear terra incognita. It is important to remember that the lesson learned by
going to the limits of the nuclear binding is also important for normal nuclei
from the neighborhood of the beta stability valley. And, of course, radioactive
nuclei are crucial astrophysically; they pave the highway along which the
nuclear material is transported up in the proton and neutron numbers during the
complicated synthesis process in stars.Comment: 26 ReVTeX pages, 11 Postscript figures, uses epsf.sty, to be
published in: Theme Issue on Science with Beams of Radioactive Nuclei,
Philosophical Transactions, ed. by W. Gelletl
Superheavy nuclei in selfconsistent nuclear calculations
The shell structure of superheavy nuclei is investigated within various
parametrizations of relativistic and nonrelativistic nuclear mean field models.
The heaviest known even-even nucleus 264Hs is used as a benchmark to estimate
the predictive value of the models. From that starting point, doubly magic
spherical nuclei are searched in the region Z=110-140 and N=134-298. They are
found at (Z=114, N=184), (Z=120, N=172), or at (Z=126, N=184), depending on the
parametrization.Comment: 16 pages RevTeX, 2 tables, 2 low resolution Gif figures (high
resolution PostScript versions are available at
http://www.th.physik.uni-frankfurt.de/~bender/nucl_struct_publications.html
or at ftp://th.physik.uni-frankfurt.de/pub/bender ), submitted to Phys. Rev.
Shell structure of superheavy nuclei in self-consistent mean-field models
We study the extrapolation of nuclear shell structure to the region of
superheavy nuclei in self-consistent mean-field models -- the
Skyrme-Hartree-Fock approach and the relativistic mean-field model -- using a
large number of parameterizations. Results obtained with the Folded-Yukawa
potential are shown for comparison. We focus on differences in the isospin
dependence of the spin-orbit interaction and the effective mass between the
models and their influence on single-particle spectra. While all relativistic
models give a reasonable description of spin-orbit splittings, all
non-relativistic models show a wrong trend with mass number. The spin-orbit
splitting of heavy nuclei might be overestimated by 40%-80%. Spherical
doubly-magic superheavy nuclei are found at (Z=114,N=184), (Z=120,N=172) or
(Z=126,N=184) depending on the parameterization. The Z=114 proton shell
closure, which is related to a large spin-orbit splitting of proton 2f states,
is predicted only by forces which by far overestimate the proton spin-orbit
splitting in Pb208. The Z=120 and N=172 shell closures predicted by the
relativistic models and some Skyrme interactions are found to be related to a
central depression of the nuclear density distribution. This effect cannot
appear in macroscopic-microscopic models which have a limited freedom for the
density distribution only. In summary, our findings give a strong argument for
(Z=120,N=172) to be the next spherical doubly-magic superheavy nucleus.Comment: 22 pages REVTeX, 16 eps figures, accepted for publication in Phys.
Rev.
- …