20,400 research outputs found

    Hematology as Related to Diving Characteristics of Elaphe obsoleta, Nerodia erythrogaster, Nerodia Fasciata and Nerodia rhombifera

    Get PDF
    The diving capabilities of Nerodia erythrogaster flavigaster and Nerodia fasciata confluens were investigated and the results were compared with similar studies on Nerodia rhombifera rhombifera and Elaphe obsoleta obsoleta (Baeyens et al., 1978). In addition, morphological and hematological parameters contributing to underwater survival were examined. The duration of underwater survival for N. erythrogaster and N. fasciata was approximately one hour with no difference between the species. The lung volumes of the two species were also similar but were significantly less than lung volumes reported for E. obsoleta. There were no significant differences in hemoglobin concentration, red blood cell count or hematocrit between N. rhombifera, N. erythrogaster, N. fasciata, and E. obsoleta. Based on similarities in underwater tolerance, lung morphology and hematology, Nerodia more closely resembles the terrestrial E. obsoleta than those reptiles specifically adapted to an underwater existance

    Ultra-high molecular weight silphenylene-siloxane polymers

    Get PDF
    Silphenylene-siloxane copolymers with molecular weights above one million were prepared using a two stage polymerization technique. The technique was successfully scaled up to produce 50 grams of this high polymer in a single run. The reactive monomer approach was also investigated using the following aminosilanes: bis(dimethylamino)dimethylsilane, N,N-bis(pyrrolidinyl)dimethylsilane and N,N-bis(gamma-butyrolactam)dimethylsilane). Thermal analyses were performed in both air and nitrogen. The experimental polymers decomposed at 540 to 562 C, as opposed to 408 to 426 C for commercial silicones. Differential scanning calorimetry showed a glass transition (Tg) at -50 to -55 C for the silphenylene-siloxane copolymer while the commercial silicones had Tg's at -96 to -112 C

    Oxidized basalts on the surface of Venus: Compositional implications of measured spectral properties

    Get PDF
    Venera Lander reflectance data are compared with high temperature spectra of the same basaltic materials. The dark, flat unoxidized basalts are still inconsistent with the Venera data in the near-infrared. Basaltic material with a ferric component, however, would satisfy both the increase in reflectance beyond 0.7 microns as well as the dark, relatively colorless character in the visible. Therefore, it is concluded that besaltic surfaces of Venus represented by these measurements either contain minerals with uncommon characteristics, or, more likely, are relatively oxidized

    Improved simulation of aerosol, cloud, and density measurements by shuttle lidar

    Get PDF
    Data retrievals are simulated for a Nd:YAG lidar suitable for early flight on the space shuttle. Maximum assumed vertical and horizontal resolutions are 0.1 and 100 km, respectively, in the boundary layer, increasing to 2 and 2000 km in the mesosphere. Aerosol and cloud retrievals are simulated using 1.06 and 0.53 microns wavelengths independently. Error sources include signal measurement, conventional density information, atmospheric transmission, and lidar calibration. By day, tenuous clouds and Saharan and boundary layer aerosols are retrieved at both wavelengths. By night, these constituents are retrieved, plus upper tropospheric, stratospheric, and mesospheric aerosols and noctilucent clouds. Density, temperature, and improved aerosol and cloud retrievals are simulated by combining signals at 0.35, 1.06, and 0.53 microns. Particlate contamination limits the technique to the cloud free upper troposphere and above. Error bars automatically show effect of this contamination, as well as errors in absolute density nonmalization, reference temperature or pressure, and the sources listed above. For nonvolcanic conditions, relative density profiles have rms errors of 0.54 to 2% in the upper troposphere and stratosphere. Temperature profiles have rms errors of 1.2 to 2.5 K and can define the tropopause to 0.5 km and higher wave structures to 1 or 2 km

    Optical and ROSAT X-ray observations of the dwarf nova OY Carinae in superoutburst and quiescence

    Full text link
    We present ROSAT X-ray and optical light curves of the 1994 February superoutburst of the eclipsing SU UMa dwarf nova OY Carinae. There is no eclipse of the flux in the ROSAT HRI light curve. Contemporaneous `wide B' band optical light curves show extensive superhump activity and dips at superhump maximum. Eclipse mapping of these optical light curves reveals a disc with a considerable physical flare, even three days into the superoutburst decline. We include a later (1994 July) ROSAT PSPC observation of OY Car that allows us to put constraints on the quiescent X-ray spectrum. We find that while there is little to choose between OY Car and its fellow high inclination systems with regard to the temperature of the emitting gas and the emission measure, we have difficulties reconciling the column density found from our X-ray observation with the column found in HST UV observations by Horne et al. (1994). The obvious option is to invoke time variability.Comment: 16 pages, 14 figures, accepted for publication in MNRA

    Deformed Brueckner-Hartree-Fock calculations

    Get PDF
    The renormalized Brueckner-Hartree-Fock (RBHF) theory for many-body nuclear systems is generalized to permit calculations for intrinsic states having permanent deformation. Both Hartree-Fock and Brueckner self-consistencies are satisfied, and details of the numerical techniques are discussed. The Hamada-Johnston interaction is used in a study of deformations, binding, size, and separation energies for several nuclei. Electromagnetic transition rates, moments, and electron scattering form factors are calculated using nuclear wave functions obtained by angular momentum projection. Comparison is made to experiment as well as to predictions of ordinary and density-dependent Hartree-Fock Theory

    Short-range correlations in carbon-12, oxygen-16, and neon-20: Intrinsic properties

    Get PDF
    The Brueckner-Hartree-Fock (BHF) method has been applied to nuclei whose intrinsic structure is nonspherical. Reaction matrix elements were calculated as functions of starting energy for the Hamada-Johnston interaction using the Pauli operator appropriate to O-16 and a shifted oscillator spectrum for virtual excited states. Binding energies, single particle energies, radii, and shape deformations of the intrinsic state, in ordinary as well as renormalized BHF, are discussed and compared with previous HF studies and with experiment when possible. Results are presented for C-12, 0-16 and Ne-20. It is found that the binding energies and radii are too small, but that separation energies are well reproduced when the renormalized theory is used

    Ultrahigh Purcell factors and Lamb shifts using slow-light metamaterial waveguides

    Full text link
    Employing a medium-dependent quantum optics formalism and a Green function solution of Maxwell's equations, we study the enhanced spontaneous emission factors (Purcell factors) and Lamb shifts from a quantum dot or atom near the surface of a %embedded in a slow-light metamaterial waveguide. Purcell factors of approximately 250 and 100 are found at optical frequencies for p−p-polarized and s−s-polarized dipoles respectively placed 28\thinspace nm (0.02\thinspace λ0\lambda_{0}) above the slab surface, including a realistic metamaterial loss factor of γ/2π=2THz\gamma /2\pi =2 \mathrm{THz}. For smaller loss values, we demonstrate that the slow-light regime of odd metamaterial waveguide propagation modes can be observed and related to distinct resonances in the Purcell factors. Correspondingly, we predict unusually large and rich Lamb shifts of approximately -1 GHz to -6 GHz for a dipole moment of 50 Debye. We also make a direct calculation of the far field emission spectrum, which contains direct measurable access to these enhanced Purcell factors and Lamb shifts

    Search for the electric dipole moment of the electron with thorium monoxide

    Get PDF
    The electric dipole moment of the electron (eEDM) is a signature of CP-violating physics beyond the Standard Model. We describe an ongoing experiment to measure or set improved limits to the eEDM, using a cold beam of thorium monoxide (ThO) molecules. The metastable H3Δ1H {}^3\Delta_1 state in ThO has important advantages for such an experiment. We argue that the statistical uncertainty of an eEDM measurement could be improved by as much as 3 orders of magnitude compared to the current experimental limit, in a first-generation apparatus using a cold ThO beam. We describe our measurements of the HH state lifetime and the production of ThO molecules in a beam, which provide crucial data for the eEDM sensitivity estimate. ThO also has ideal properties for the rejection of a number of known systematic errors; these properties and their implications are described.Comment: v2: Equation (11) correcte

    Electrochemical Energy Storage Subsystems Study, Volume 2

    Get PDF
    The effects on life cycle costs (LCC) of major design and performance technology parameters for multi kW LEO and GEO energy storage subsystems using NiCd and NiH2 batteries and fuel cell/electrolysis cell devices were examined. Design, performance and LCC dynamic models are developed based on mission and system/subsystem requirements and existing or derived physical and cost data relationships. The models are exercised to define baseline designs and costs. Then the major design and performance parameters are each varied to determine their influence on LCC around the baseline values
    • …
    corecore