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SHORT-RANGE CORRELATIONS IN CARBON-12, OXYGEN-16, AND NEON-20:

INTRINSIC PROPERTIES

by Richard C. Braley, William F. Ford, Richard L Becker,*
and Malcolm R. Patterson*

Lewis Research Center

SUMMARY

The short -range correlations known to be present in nuclear matter are included in
the calculation of properties of finite, nonspherical nuclear systems by employing the
Brueckner-Hartree-Fock (BHF) method. The necessary modifications in this technique,
which has previously been applied only to spherical nuclei, are presented. Renormaliza-
tion resulting from inclusion of occupation probabilities is also discussed. Intrinsic
spectra, radii, quadrupole moments, and hexadecapole moments are investigated for
12 20 1fiC and Ne, and the O spherical results are presented. Predictions are included for
the renormalized BHF as well as BHF.

INTRODUCTION

The connection between the nuclear many-body problem and the prediction of prop-
erties of finite nuclei has been studied with increased intensity in the last few years
(refs. 1 to 3). Advances in computational technology have made it possible to drop the
"closed-shell-core" assumption which was common to most nuclear structure calcula-
tions (refs. 4 to 6). Thus it has become feasible to attempt to understand nuclear phe-
nomena in terms of a microscopic theory without the additional uncertainties which result
when an inert core is assumed. (The inert-core effects are usually manifested through
the need for effective charges in calculating electromagnetic properties and the need for
effective interactions in obtaining matrix elements of the nuclear Hamiltonian.)

A natural starting point for many microscopic studies of nuclear systems has beenv

the Hartree-Fock (HF) method (ref. 7), which has contributed significantly to our under-
standing of the properties of nuclei (ref. 8). The use of the HF method has been limited
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somewhat by the type of interactions available for use in calculations, but it is certainly
the most convenient method presently available for investigating nuclear many-body sys-
tems. For the most part HF studies have been restricted to the use of (1) phenomeno-
logical effective interactions (refs. 9 and 10) or (2) effective interactions based directly
or indirectly on nuclear matter calculations (refs. 11 to 13). Microscopic studies of
both spherical and deformed nuclei have been made using such effective interactions.

Bassichis and collaborators (ref. 10) have investigated many aspects of spherical
nuclei and deformed intrinsic systems using the HF method with the bare Tabakin inter-
action. This interaction fits the low energy nucleon-nucleon scattering data but yields

'poor saturation properties when used in structure studies. Large second-order correc-
tions to the energy indicated that a Brueckner-Goldstone series would be desirable, and

16 4Gmitro and Sotona (ref. 14) made such a calculation for O and He and found consider-
able improvement in the binding energy. Although they did not calculate the rms radius,
it is expected to be smaller than experiment. On the other hand, Ford, Braley, and
Bar-Touv have found that many other nuclear properties (such as energy spectra, E2
rates, quadrupole moments, and inelastic proton scattering cross sections) can be well
described when the bare Tabakin force is used in microscopic studies (ref. 8).

Effective interactions of the second type have been constructed using realistic
nucleon-nucleon forces, such as the Yale and Hamada-Johnston potentials. The effective
interaction of Shakin et al. (ref. 11) has been used in several microscopic studies of
spherical and deformed nuclei. Pal and Stamp have investigated intrinsic HF properties
with it and found that saturation could not be obtained (ref. 15). However, Gunye suc-
cessfully used the same matrix elements to study energy levels and electromagnetic prop-
erties of several nuclei in the s-d shell (ref. 16). Davies, Krieger, and Baranger have
made HF calculations (ref. 17) using a velocity-dependent two-body force which saturates
nuclear matter (ref. 13). They found fairly good agreement with experiment for binding
energies, energy levels, and density distributions for several nuclei which they consid-
ered to be spherical. Later deformed HF calculations by Krieger were made using a
similar force, but the results were not as impressive (ref. 18). Lee and Cusson (Chalk
River Nuclear Laboratory) have used the semirealistic interaction of Saunier and
Pearson in recent unrestricted HF calculations (private communication). They studied a
large number (57) of light nuclei and generally found quite good agreement with
experiment.

The effective interaction of Negele (LINEG) was also constructed from nuclear mat-
ter considerations (ref. 12). This interaction, which is density- and energy-dependent,
was found to yield very good binding energies, sizes, single-particle energies, and elec-
tron scattering cross sections for several spherical nuclei. Much of the improvement in
binding energy and radius, however, is due to adjustment of the strength and range of the
interaction to obtain the desired saturation properties of nuclear matter or of selected
finite nuclei.



Zofka and Ripka have used LINEG to study the intrinsic states for the light doubly
even N=Z nuclei (ref. 19). Their results are quite good, but it should be kept in mind
that they are calculated for, or deduced from, the intrinsic state and therefore may be
altered by angular momentum projection.

>••»

Predictions similar to those of Zofka and Ripka have been reported by Reid et al.
(ref. 20) who claim to have done a BHF calculation. Theirs, however, is not a•̂
Brueckner-Hartree-Fock calculation, but rather is similar to that of Zofka and Ripka in
which a density dependent effective interaction is used.

Although the HF studies using effective interactions have significantly increased our
understanding of the structure of nuclei, one would nevertheless like to begin with a real-
istic nucleon-nucleon interaction and, with as few approximations as possible, calculate
nuclear properties based on a many-body theory. The Brueckner-Goldstone (BG) theory
provides a»starting point for such calculations.

Following the pioneering work of Brueckner (ref. 21) and Goldstone (ref. 22), a
large number of papers were written to clarify the theory and extend it beyond applica-
tions to nuclear matter (refs. 23 to 27). In recent years, the usefulness of the nuclear-
matter calculations in studying properties of finite nuclei was demonstrated by Kuo and
Brown (ref. 5), and the development of the Brueckner theory for closed-shell nuclei was
advanced considerably by Kohler and McCarthy (ref. 28) and by Becker, MacKellar, and
Morris (ref. 29).

Uncertainties do remain in the many-body theory because of a lack of understanding
of the two-body force and some questions regarding the importance of higher-order
Brueckner-Goldstone diagrams (ref. 30) and three-body clusters (ref. 31). However, if
one hopes to understand the structure of nuclei in terms of a true microscopic picture, a
Brueckner-Hartree-Fock calculation appears to be the most reasonable approach pres-
ently available.

The application of the BHF method to the investigation of finite-nucleus properties
has thus far been limited to spherical, closed-shell nuclei. Among the most significant
of the calculations made to date have been those of the Oak Ridge groups (refs. 32 to 38).
The self-consistent BHF studies by Davies et al. (refs. 35 and 36) demonstrated the ease
and reliability with which such calculations could be made, although they found the nuclei
to be too small and underbound. The inclusion of occupation probabilities in finite-
nucleus Brueckner calculations by Becker made a substantial improvement in the single -
particle energies, and it was found that the depletion factors for normally occupied single-
particle orbits were of the order of 15 percent. Subsequent calculations by Davies and
McCarthy showed that good results for the binding energy could be obtained when such
higher-order diagrams are included; however, the nuclei were still too small.

The results discussed previously indicate that the nuclear many-body problem is now
sufficiently understood to make it reasonable to examine the degree to which one can use
it to predict nuclear properties while, at the same time, attempting to refine and extend



our present knowledge of the problem. Since the majority of nuclei are not of the spher-
ical, closed-shell type, it is of interest to determine whether the energy-dependent reac-
tion matrix obtained from BHF calculations leads to deformations, gaps, etc. which are
similar to those resulting from standard HF calculations with effective interactions. The
light deformed nuclei provide a good starting point for such a study, since the number of
particles involved is small enough to keep the problem tractable and the simple HF ap-
proximation is understood well enough to provide guidelines for what is recognized to be

• a rather complicated problem. Although there are some conceptual difficulties asso-
ciated with obtaining physical states from deformed intrinsic systems when BHF is used,

.there is still much to be gained from a study of properties of the intrinsic system. For
instance, it would be interesting to see how deformations, single-particle energies, and
energy gaps are affected when one does BHF and renormalized BHF rather than the sim-
pler HF calculation using an energy independent interaction. The aim of this report is to
discuss and compare such calculations for C, O, and Ne.

THEORY

The deformed intrinsic HF state of a many -body system is nondegenerate in the body-
fixed frame; therefore, in this frame Goldstone's linked -cluster perturbation expansion
(ref . 30) is valid. If one makes the usual association of terms in the perturbation series
with Brueckner-Goldstone diagrams, then - from the viewpoint of diagram analysis - the
only departure from the more familiar spherical situation is that propagation lines are
now associated with deformed single -particle states. It follows that summations and can-
celations of particular diagrams are identical for finite spherical and deformed systems.
As usual, a summation of terms representing a series of ladder diagrams corresponds
to (and is accomplished by) solving the integral equation

Here t««(E ) is Brueckner's reaction matrix, v,« is a nucleon-nucleon interaction with
short-range repulsion E is the "starting energy" (ref. 29), Q is the Pauli operators
which forbids scattering into occupied orbitals in the nucleus being considered, and
H 1 2 ~ h l + h2' The sinSle-Particle Hamiltonians h., and h2 include potentials which
are defined so as to cancel certain classes of diagrams; these potentials are deformed
for the case of interest here.

Because of the hard core in v^, it is convenient to define a correlated two -particle
wavefunction iK by means of the relation



from which one obtains the Bethe-Goldstone equation

!2

The direct solution of this equation is very difficult because the Pauli operator Q and
the Green's function (h10 - E ) depend on nucleon orbitals which are not determined

\ \.£i SJ
until the HF problem is solved using the matrix elements of t10(E ). This aspect of

R
self-consistency is usually treated indirectly by defining a "reference" t-matrix t^CE
which satisfies

- Es

as a first approximation to the nuclear t-matrix. The reference t-matrix is found from
the corresponding reference Bethe-Goldstone equation

h!2 - Es

and the nuclear t-matrix then obtained - after the HF problem is solved using the refer
ence t-matrix - by means of the relation

Now it is clear that solution of equation (5) will also be complicated if h12 contains
deformed single-particle potentials. This is immediately obvious if we contemplate the
transformation to relative and center-of-mass coordinates, which is necessary since •
v10 is given in that representation. On the other hand, if equation (5) is solved for

R Rspherical reference operators h10 and QT this difficulty will be avoided, and the prob
R Rlem of making Pauli corrections (to Q ) and spectral corrections (to h12) by using



equation (6) will also be greatly simplified. (This is essentially the procedure we have
in mind.)

Once the reaction matrix elements have been obtained, the Hartree-Fock part of the
BHF calculation begins. The set of self -consistent equations to be solved are

h|X) = ex|\> (7)

.where

<x|h|M) = < X | K | M > + (X|U|M> (8)

Here K is the kinetic energy operator, and U is a one -body potential whose matrix
elements are obtained from those of t.,«(Es) by means of an equation in which the value
of the starting energy E depends on whether X and u. refer to hole -hole, hole-s
particle, or particle -particle states (refs. 35 and 37). This results in a double self-
consistency requirement: the orbitals (x) are eigenstates of (K + U), and U depends on
the energies of the filled orbitals. It therefore appears that, in order to do BHF cor-
rectly, we must recalculate the reaction matrix after each iteration in a self -consistency
procedure. Fortunately, this procedure can be avoided by the technique introduced by
McCarthy and Davies (ref . 37) in which t is expressed as a power series:

N

'12^ = I AnEs <9)

n=l

If the reaction matrix is calculated for several starting energies, the coefficients A
may be obtained by a suitable fitting procedure. Once the reaction matrix is obtained as
a function of starting energy, it would be possible after each iteration in the BHF prob-
lem to use equation (6) to make the Pauli corrections. In practice, one would probably
get sufficiently accurate results if these corrections were only made for the last two or
three steps in the iterative procedure.

The usual method of solving equations (7) is to introduce a finite set of basis vectors
which span several major shells. The equations then become

<a|u|b)\
J

C£ = ex(£ (10)

where the coefficients C^ express the deformed orbitals in terms of a spherical oscil-
lator representation, that is,



The method of Davies, Baranger, Tarbutton, and Kuo (ref . 35) may be used to obtain the
matrix elements of U from those of t^E ):

occ.

<a|U|b> =i S Z S
a'cd { x

occ.

2 IS pBb'&Hi^M (12)
^b'cd TJ X

where

x _M*^x

Although this expression was derived using an approximation for the starting-energy de-
pendence of particle -particle and particle -hole matrix elements, it was pointed out by
Davies et al. (ref. 37) that the effect on states of primary interest (occupied) is of second
order only. It was later demonstrated by Davies and Baranger (ref. 36) that the exact
expression gives essentially the same results for light nuclei. In the case of a spherical,
closed-shell nucleus, the evaluation of equation (12) is straightforward, because the sum-
mations over magnetic quantum numbers may be carried out in closed form. With de-
formed nuclei this is not possible; thus, the effective dimensionality of the basis space is
greatly increased. Since the summations in equation (12) must be repeated for each it-
eration (because the e^ and pab have changed), great care must be taken to keep the
time required per iteration within reasonable limits. Once the iterative procedure has
converged to a self-consistent set of orbitals fx> , the (first -order) binding energy is
given (as in HF theory) by

occ.

O'K 'x>+ex]

In contrast to ordinary BHF, the renormalized theory (RBHF) takes into account the
depletion of normally occupied single -particle states resulting from two-nucleon corre-
lations (ref. 3). Probably the main difference is that RBHF includes, along with the

7



usual BHF contribution to the one-body potential (diagram (a)), the contribution of
diagram (b)

(a) (b) (c)

which, in the unrenormalized Brueckner theory, is regarded as one of two third-order
rearrangement potentials. Brandow (ref. 26) urged that all such potentials be included in
the definition of the self-consistent field, where they would renormalize the BHF term,
rather than be calculated only as a rearrangement correction (ref. 39). Thus, in the
RBHF approximation, the one-body potential is represented by diagram (c), which in-
cludes the contribution of diagram (a) and (b) and a host of similar but higher-order dia-
grams. That series of diagrams can be summed as before by appealing to the integral
equation which the series represents. The result may be written as diagram (a) times a
factor P, (diagram (c)), where P, is the occupation probability for the orbit J X ) . Prac-
tically speaking, the effect on our calculation is to require insertion of the appropriate
factors of P. in equation (12) and the use of a modified expression for the binding energy:

A complete renormalization of the entire perturbation series has been obtained by
Brandow and is discussed in detail in reference 3.

RESULTS

Reaction matrix elements were calculated as functions of starting energy for the
1 ft

Hamada-Johnston interaction (ref. 40), using a Pauli operator (Q) appropriate to O and
a shifted oscillator spectrum (h-.^) f°r the virtual excited states. Detailed descriptions of
the method used to solve the reference Bethe-Goldstone equations, as well as a discussion
of the need for a shifted spectrum, may be found in reference 29. The t-matrix so ob-
tained was the spherical reference t-matrix with which the deformed Hartree-Fock cal-
culations were begun, that is, the oscillator representation of the t-matrix elements as
they appear on the right side of equation (12). At each subsequent iteration in the solution

8



of the HF equations, the starting energies from the previous iteration were used in equa-
tion (12) to obtain the one-body potential; however, the Pauli corrections were not made.
The "on-shell" prescription is used for the particle-particle matrix elements in the de-
formed BHF calculations, although an approximate "off shell" prescription was used in
the original spherical calculations (refs. 29 and 35). The choice of the shift parameter
C used in the calculations has been discussed in reference 27.

19 1fi POProperties of the intrinsic states of C, O, and Ne have been calculated for
oscillator lengths of 1. 57 and 1. 77 femtometers using BHF and renormalized BHF. The
variational problem was solved subject to the condition that the deformed intrinsic states
possess axial symmetry and four-fold degeneracy. Expectation values of operators are
calculated with the uncorrelated wavefunctions. The results have not been corrected for
Coulomb and center-of-mass effects; such corrections should be small (1 to 2 MeV) for
the nuclei studied here. *̂

The HF calculations with which our results are compared are those of Zofka and
Ripka (ref. 19), who used the effective interaction of Negele. This interaction is a
density-dependent one which was found to yield good binding energies, sizes, single -
particle energies, and electron scattering cross sections for certain spherical nuclei.
Much of the improvement in binding energy and radius, however, is due to adjustment of
the strength and range of the interaction to obtain the desired saturation properties of
nuclear matter or selected finite nuclei. In the tables contained in this report, ZR
refers to the results labelled n in reference 19. For this set of calculations, perturba-
tion theory was used to correct for the fixed starting energy and Coulomb interaction.
Whenever possible, the ZR values appropriate to neutrons are quoted, since we do not
treat the Coulomb interaction in the calculations reported here.

12The results for C are presented in table I. As expected from our experience with
spherical, closed-shell nuclei, the RBHF calculation yields better values than the BHF
calculation for both oscillator lengths. An oblate shape for the nucleus is the lowest
energy solution predicted, in agreement with the usual HF studies. Note that the radius
predicted by the ZR calculation is considerably larger than experiment, and that their
intrinsic quadrupole moment is 30 percent larger than the largest RBHF result. This is
not surprising since the radius given by RBHF is only 2.37 femtometers, as compared to
2. 59 femtometers given by ZR. We also observe that deformation increases when occu-
pation probabilities are included and that the level ordering is unchanged. In all cases,
the nucleus is underbound, although ZR's results are 20 percent larger than the RBHF

12results. The intrinsic properties of C do not seem to be very sensitive to the oscillator
length. Proton separation energies are given in the experiment column. Results are
given for neutrons in the (BHF, RBHF) calculations, but the Coulomb effects should only .
increase the results by about 2 MeV (i. e. , decrease the binding).



TABLE I. - COMPARISON OF BHF AND RBHF PREDICTIONS OF INTRINSIC PROPERTIES OF 12C

WITH THE RESULTS OF ZOFKA AND RIPKA

Properties

Binding energy per nucleon,
-E/A, MeV

Energy gap, A, MeV

Intrinsic rms radius,
(R2)1/2, fm

Mass quadrupole moment,

(Q 2>, fm 2

Mass hexadecapole moment,
(Q 4 >, fm4

(Magnetic quantum number,
occupation probability) SP
energy, (m£, Px)ex, MeV

Shift parameter, C, MeV

Oscillator length, b, fm

1.57 1.77 1.67

Calculation

BHF

4.6

12.7

2.17

-25.4

17.7

(l/2+, 1.0)
-46.2

(3/2", 1.0)
-23.2

(1/2", 1.0)
-21.8

48.64

RBHF

5.6

11.2

2.30

-29.6

23.4

(l/2+, 0.81)
-35.4

(3/2", 0.82)
-16.5

(1/2", 0.83)
-15.5

46.84

BHF

4.5

11.9

2.25

-26.6

19. 1

(l/2+, 1.0)
-43.9

(3/2", 1.0)
-21.8

(1/2", 1.0)
-20.4

40.76

RBHF

5.2

10.4

2.37

-30.7

26. 7

(l/2+, 0.84)
-34.5

(3/2", 0.84)
-15.9

(1/2", 0.85)
-14.9

38.76

ZRa

6.4

9.8

2.59

-40.9

(+)
-28

(-)
-15

(-)
-15

Experiment

7.7

2.40±0.03'

35.5±1.0

15.0±0.5

15.0±0. 5

b
The orbital energies in the ZR column refer to proton separation energies.
Proton separation energies from ref. 42.

It has been known for some time that ordinary HF calculations do not provide good
results for separation energies, and we observe that the ZR calculation differs by 20
percent from experiment for the most tightly bound state, although the p states are well
represented. This is somewhat better than previous HF predictions of SP energies, how-
ever, since one usually finds that at least one of the predicted SP energies differs signif-
icantly (~50 percent) from experiment. Unrenormalized BHF is known to suffer from
large rearrangement corrections and is also not expected to agree very well with exper-
iment; this too is observed. The RBHF results are clearly the best of the three
calculations.

An analogue of Koopmans' theorem for separation energies in RBHF has recently
been established (ref. 34). Thus we may associate the energy of the first unoccupied

10



orbit in 12C with the separation energy of the last neutron in C. Experimentally, the
number is found to be 4. 95 MeV (ref. 41). The RBHF prediction is about 4. 5 MeV, which
is in good agreement with the measured result.

Table n contains the results for 16O. Since these results are for spherical O and
this case has been discussed extensively in other studies, we do not feel it necessary to
go into detail here. Efforts to obtain the deformed excited state in 16O have thus far
been unsuccessful. This state has been found, in standard HF studies, to be a 4p-4h
state lying some 20 to 25 MeV above the ground state. The 4p-4h states which we have .
investigated so far have been very unstable.

TABLE II. - COMPARISON OF BHF AND RBHF PREDICTIONS OF INTRINSIC PROPERTIES OF 16O

WITH THE RESULTS OF ZOFKA AND RIPKA

Properties

Binding energy per nucleon,
-E/A, MeV

Energy gap, A, MeV

Intrinsic rms radius,
< R 2 > 1 / 2 , f m

Mass quadrupole moment,

<Q2> , fm2

Mass hexadecapole moment,

< Q 4 > , fm 4

(Magnetic quantum number,
occupation probability) SP
energy, (mj, P^) e^, MeV

Shift parameter, C, MeV

Oscillator length, b, fm

1.57 1.77 1.67

Calculation

BHF

6.2

18.0

2. 16

0.0

0.0

(l/2+, 1.0)
-56.7

(3.2" , 1.0)
-30.0

(1/2", 1.0)
-30.0

(1/2", 1.0)
-23.5

50.46

RBHF

7 .3

16.9

2.27

0.0

0.0

(l/2+, 0.79)
-43.9

(3/2", 0.80)
-21.3

(1/2", 0.80)
-21.3

(1/2", 0.80)
-17.0

48.64

BHF

6.2

17.2

2.25

0.0

0.0

(l/2+, 1.0)
-54.9

(3/2", 1.0)
-28.3

(1/2", 1.0)
-28.3

(1/2", 1.0)
-22.6

42 .62

RBHF

7.0

15.8

2.33

0.0

0.0

(l/2+, 0.83)
-43.6

(3/2", 0.82)
-20.9

(1/2", 0.82)
-20.9

(1/2", 0.82)
-16.8

40.64

ZRa

7.5

17.0

2 .72

0.0

0.0

(+)
-33

(-)
-17

(-)
-17

(-)
-17

Experiment

7.98

2.67±0.03

43±5

21.8

21. 8

15.7

aThe orbital energies in the
Proton separation energies

ZR column refer to proton separation energies,
from ref. 33.
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20Of the even Z-even N nuclei in the s-d shell, Ne has proved most amenable to de-
scription by means of standard HF theory. The various properties of this nucleus that
are primarily long range in character may be obtained with good accuracy from a prolate
intrinsic state with a rather large hexadecapole moment. Those properties primarily
short range in character (particularly the binding energy) are of course poorly given in
standard HF theory.

onOur BHF and RBHF results for Ne are presented in table HI. All the calculations

TABLE III. - COMPARISON OF BHF AND RBHF PREDICTIONS OF INTRINSIC PROPERTIES OF

20Ne WITH THE RESULTS OF ZOFKA AND RIPKA

Properties

Binding energy per nucleon,
-E/'A, MeV

Energy, A, MeV

Intrinsic rms radius,
(R2)1/2 , fm

Mass quadrupole moment,
< Q 2 > , fm 2

Mass hexadecapole moment,

<Q4> , fm4

(Magnetic quantum number,
occupation probability) SP
energy, (m. , P-,), e. , MeV

Shift parameter, C, MeV

Oscillator length, b, fm

1.57 1.77 1.83

Calculation

BHF

5.8

7.6

2.36

56.9

130.7

(l/2 + , 1.0)
-61.5

(1/2", 1.0)
-38.2

(3/2", 1.0)
-32. 1

(1/2", 1.0)
-27. 1

(l/2+, 1.0)
-18.6

50.46

RBHF

7.1

7.4

2.47

63.6

150.7

(l/2+, 0.79)
-47.7

(1/2', 0.79)
-28.3

(3/2', 0.80)
-22.8

(1/2", 0.79)
-19.4

(l/2 + , 0.81)
-12.0

48.63

BHF

6. 1

7.9

2.46

62. 1

167.7

(l/2+, 1.0)
-59.9

(1/2- , 1.0)
-36.5

(3/2", 1.0)
-30.3

(1/2", 1.0)
-25.9

(l/2+, 1.0)
-18.4

42 .62

RBHF

6.9

7.5

2.56

70.4

202.9

(l/2+, 0.83)
-47.3

(1/2", 0.81)
-27.8

(3/2", 0.82)
-22.3

(1/2", 0.81)
-19. 1

(l/2+, 0.82)
-12.6

40.64

ZRa

7. 1

6.9

3.05

97.9

(+)
-34

(-)
-23

(-)
-17

(-)
-17

(+)
-10

Experiment

8.2

(2.55)b

(69.8)b

(214)b

Proton separation energies as referred to in table I.
°These values are obtained from a standard HF calculation with b = 1.77 fm.
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yield prolate intrinsic states with the same level ordering, and as for the preceding
cases, the RBHF predictions are somewhat more satisfactory than the BHF. The rms

90radius of Ne has not been measured, but it can be inferred from measurements on
neighboring nuclei to be about 2. 8 femtometers. Again we find the BHF and RBHF radius
values too small, and the ZR value somewhat too large, and all the calculations under-
bind the nucleus.

CONCLUDING REMARKS

In spite of the deficiencies found in BHF and RBHF calculations for spherical nuclei,
it is gratifying to note that the successful features of the standard HF theory seem also to
be present in the Brueckner version. As evidence of this, we may observe the similarity
of values for the "long-range observables" (R } *' , Q2, and Q4, which are listed in ~
table IH for both HF and RBHF calculations with b = 1. 77 femtometers. If this similar-
ity persists for other values of the oscillator parameter, one would be justified in claim-
ing that renormalized Brueckner-Hartree-Fock calculations give a fundamental descrip-

20tion of Ne with a consistent degree of accuracy for all its observables. Hopefully this
would give even greater emphasis to investigation of the chief drawback of BHF and
RBHF theory, namely, the persistent prediction of nuclei which are too small and too
loosely bound.

When the Pauli corrections are made as suggested in the THEORY section, indica-
tions are that one may obtain some improvement in binding but that the radius will be
less affected. Evaluation of the rms radius using a correlated wavefunction would likely
yield a more reliable prediction.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, April 7, 1972,
112-02.
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