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ABSTRACT

The renormalized Brueckner-Hartree-Fock (RBHF) theory

for many-body nuclear systems has been generalized to permit
^ 't

calculations for intrinsic states haying permanent defor-

mation. Both Hartree-Fock and Brueckner self-consistencies

are satisfied, and details of the numerical techniques are

discussed. The Hamada-Johnston interaction is used in a

study of deformations, binding, size, and separation ener-

gies for several nuclei. Electromagnetic transition rates,

moments, and electron scattering form factors are calcu-

lated using nuclear wave functions obtained by angular

momentum projection. Comparison is made to experiment as

well as to predictions of ordinary and density-dependent

Hartree-Fock theory.
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M INTRODUCTION
CO
,—I

T The connection between the nuclear many-body problem and
w

the prediction of properties of finite nuclei has become a

subject of great interest in the last few years. Advances in

computational technology have made it possible to drop the

"closed-shell-core" assumption which was common to most nuclear

structure calculations. Thus it has become feasible to attempt

to bring the so-called "inert core" into active participation.

Our understanding of the properties of nuclei has been

extended significantly by the Hartree-Fock method and variations

thereof. The HF approach is of course a very natural starting

point for microscopic studies of nuclear systems because of its

simplicity and because it gives, by definition, the best inde-

pendent-particle basis for the nucleus. HF calculations, in the

+Invited paper presented to the Symposium on "Present Status
and Novel Developments in the Many-Body Problem" (Rome,
September 19-23, 1972), to be published in the Proceedings.



past, have been restricted to the use of (1) phenomenological

(2)
effective interactions or (2) effective interactions based

(3)directly on nuclear matter calculations. Such interactions

have been used in studies of both spherical and deformed nuclei.

Some of the more recent calculations using interactions of the

latter type have been quite successful in predicting a large
(5)

number of nuclear properties.

Although such studies have been invaluable in contributing

to our knowledge of nuclear structure, one would nevertheless

prefer to begin with a "realistic" nucleon-nucleon interaction

and, with as few approximations as possible, calculate nuclear

properties based on a many-body theory. The initial framework

for such an approach was provided by the pioneering work of

Brueckner and Goldstone , which was followed by a large number

of papers clarifying their theory and extending it beyond appli-
(7)

cations to nuclear matter. There still remain uncertainties

in the many-body theory because of a lack of understanding of

the two-body interaction and some questions regarding the im-

portance of higher-order Brueckner-Goldstone diagrams and
(8)

three-body clusters. However, if one hopes to understand

the structure of nuclei in terms of a true microscopic picture,

a Brueckner-Hartree-Fock (BHF) calculation seems to be the most

reasonable approach presently available.

Application of the BHF methods to finite nuclei was first
(9)

carried out by the Oak Ridge groups. They investigated



3

spherical, closed shell nuclei, and it was demonstrated by

Davies et.al. that self consistent BHF calculations could be

made easily and reliably, although they found the nuclei to
(10)

be underbound and too small. The inclusion of higher-order

diagrams, representing occupation probabilities, in BHF cal-

culations by Becker led to substantial improvement in the

single-particle energies, and it was found that depletion

factors for normally occupied single-particle orbits are of

(11)
the order of 15 percent. Subsequently Davies and McCarthy

showed that the binding energies also improve when these
(12)

higher-order diagrams are included.

Until recently Brueckner-type calculations were restricted

to infinite nuclear matter and spherical closed-shell nuclei.
\ '

However, since most nuclei do not fall in this class, it is

of interest to extend the BHF approach to include nonspherical

and/or open-shell nuclei. The light deformed nuclei provide

a good starting point for a study of this nature, since the

number of particles involved is small enough to keep the problem

tractable and the simple HF approximation is sufficiently well

understood to provide guidelines for what is recognized to be

a rather complicated problem.

The aim of this paper is to indicate how one goes about

doing such a complicated calculation, to point out some of
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the conceptual difficulties which arise for the case of deformed

nuclei, and then to discuss some results for several light

deformed nuclei. Some preliminary accounts of this work have

(13)
been reported previously.

BRUECKNER THEORY FOR DEFORMED SYSTEMS

The application of Brueckner theory to spherical closed-

shell nuclei is relatively straight forward, since the uncorre-

lated ground states of such nuclei are simple and have good

angular momentum. The single-particle Hamiltonians are there-

fore rotationally invariant, and standard techniques may be

used to obtain a relative Bethe-Goldstone (BG) equation. Details

of such Brueckner and BHF calculations have been presented

by Becker, MacKellar, and Morris, and by Davies and McCarthy.

On the other hand, the treatment of open-shell nuclei is

not at all simple. The formalisms developed thus far for nuclei

with several particles outside a core involve either an energy-

(15
dependent effective Hamiltonian (Block-Horowitz and Feshbachjj

#

or more recently an energy- independent effective Hamiltonian

(16)
arrived at by folded-diagram techniques (Baranger and Johnson,

(17)
and Kuo, Lee, and Ratcliff). While these techniques are ex-

tremely valuable in providing a formal basis for the shell model,

they .are complicated in practice and it is at present desirable

to look elsewhere for simpler means of calculating properties

of open-shell nuclei.



The theory of rotational nuclei has been aided considerably

by the concept of a deformed intrinsic state, and the present

paper provides the first detailed discussion of Brueckner theory

for nuclei for which such a model is reasonably valid„ The for-

mulation is restricted to the simplest case, that in which there

is an isolated rotational band. We employ the approximation

in which the states of good angular momentum in the band are

obtained by projection from a single deformed, intrinsic state.

This method appears promising because the simpler HF calculations

with effective interactions have demonstrated that such projected

wave functions yield reasonable dynamic as well as static pro-

perties of light nuclei.

Our approach is based on the non-degenerate Brueckner-

Goldstone-Brandow renormalized linked-cluster expansion (LCE),

starting from a deformed, determinantal, intrinsic state,<£> >

which is an eigenstate of an unperturbed Hamiltonian, Ji , con-

taining a deformed self-consistent field, LI ° The LCE generates

from <p^ a correlated, exact eigenstate, y , of an intrinsic
•\ IN

Hamiltonian, J-\> =HO + H^. In order that ?fcf may be a linear

combination of the various states, ScT.,, > °f the rotational

band, the yf̂ .lA must be degenerate in intrinsic energy; so we

define

Crt (1)
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where the proper choice of moment of inertia,v , involves

(18)
a self-consistency requirement. Subtraction of the trans-

lational and rotational energy operators is important for con-

vergence of the LCE. However, the effect of "~ ̂ /ZAwi on q>
K

is not very great, and for light nuclei is almost cancelled by

the Coulomb correction. We therefore treat these terms in

first-order perturbation theory. The rotational energy, however,

is expected to have an influence on the deformations, and con-

sequently should be treated exactly.

The addition of the correction terms of course makes the

BHF problem more complicated. In this case the Brueckner reaction

matrix satisfies the equation

' ' Q

where ?f = 7T - *L 4,' U - -^- P.'Pi ^ (3a)

and = JL. 0 " ~ " (3b)

Here the Pauli operator, Q , prevents scattering into occupied

states, 2^ is a nucleon-nucleon interaction having short range

repulsion, and j, and p-i are the single particle total angular

and linear momentum respectively. For each different matrix ele-
/

ment of G1^
co ) in the final HF representation, the starting
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energy OO is a sum of single-particle energies which are cal-

culated from Gi2 *-n the course of achieving self-consistency.

A Bethe-Goldstone (BG) equation appropriate to G^ is obtained

in the usual fashion by defining a correlated two-particle wave

function TO* The equation is of the familiar form

<a ,~'

However the solution of this equation is substantially more diffi-

cult than the standard BG equation because the one-body Hamilton-

ians appearing in the Greens' function are no longer rotationally

invariant. Furthermore, the Pauli operator depends on orbitals
/

which are now deformed. Finally, If., depends on A and x,r , and\ £/

hence varies from nucleus to nucleus.

Since a direct solution of Equation (2) is impractical, we

shall generate the matrix elements of G-^ (^ ) by means of a

two-step process. We begin by considering a reference equation

which only involves rotationally invariant objects
^ /n\

~̂  /- t.̂ \ ^̂
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and Q̂ °' are chosen to resemble h^ and Q as much as possible

and yet leave a soluble problem; i.e., harmonic oscillator fun-

1 lc<?) (9)ctions are used and M( is a shifted oscillator well .
/

Having found G]̂ 6^ )> we may obtain G^ ( ̂  ) from the relation

&ia<*» - £,z
(u>)

either by iteration or inversion. (Note that the dimensions

of the matrices to be inverted are very large, because of the

deformation of the orbitals.)

We still have a problem, however, in that 6̂ 2(̂ 0 ) changes

from nucleus to nucleus because of the dependence of I?* on A

.and ^y . This difficulty can be circumvented by considering

instead the quantity G}| ("•> ) which satisfies

(7)

(6)

It is clear that G -̂ 2 ) is the usual G-matrix constructed for

calculations on spherical nuclei, and is valid for any nucleus

in the chosen model space. From it, by means of a transformation

(19)
similar to the Gell-Mann-Goldberger two-potential theorem ,

we may obtain Gĵ ^ ) as follows:

1
to)

(8)
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where (1)
fi t«» - 1 -

and ""

These equations appear somewhat formidable, especially since a

matrix inversion is required. However, we observe that all the

quantities involved are rotationally invariant so the matrices

are block-diagonal in J as well as parity and isospin« Conse-

quently the manipulations may be carried out on the coupled matrix

elements with little computational effort., Thus we have all

that is required to obtain G]^ CO ) and begin the self -consistency

problem. (It should be noted that an exact evaluation of Eqs.

8-10 must include those matrix elements coupling to outside the

model space and back again. Traditionally these are tacitly

ignored, and all matrix multiplications and inversions are carried

out within the model space. The same remarks apply to evaluation
/ _ .

of G12 and (J . )

The set of self-consistent equations to be solved are
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^where the coefficients C^ express the deformed orbitals in terms

of a spherical oscillator representation, that is,

Ic
Note that the operator I in Eq0 (11) differs from the one ordi-

narily (p /2m) used in HF calculations £~see Eq.

*T = - i p / -1 - f 4 « °
The method of Davies, Baranger, Tarbutton, and Kuo may be

used to obtain the matrix elements of LI in terms of G19(cO ):

(12)

with
OC4.,

/)
L,
» 4

/ ,
The RBHF single particle energy B c ̂  6^ unless Y is a

~ T
particle and O a hole, in which case & ~ =- CP o P-» is

the occupation probability for orbit X . The structure of U

results in a double self-consistency requirement: the orbitals

\ are eigenstates of (T + U), and U itself depends on the ener-

gies of the filled orbitals. It therefore appears that, in order

to do BHF correctly, we must recalculate the reaction matrix after

each iteration in a self-consistency procedure. Fortunately this
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can be avoided by the technique introduced by McCarthy .and Davies ,

in which each matrix element - of G is expressed as a power series:
N

a=' .(14)

If the reaction matrix is calculated for several starting energies,

the coefficients A^ may be obtained by a suitable fitting procedure.

Once the reaction matrix is obtained as a function of starting

energy, it would be possible .after each iteration in the BHF problem

to use equation (6) to make the Pauli corrections. As mentioned

earlier, since J is not sharp the matrices involved are very, large,

so that a solution by, matrix inversion- is impractical. Happily,

it has been found that the once-iterated form of (6) is quite ac-

curate for light nuclei. Consequently an acceptable procedure would
/

be to make use of G^Ctu ) for G-j^Cc-P ) on the first- iteration, and

thereafter to precede each iteration by an "orbital correction" to

the previous G^Coo )• This would continue until self-consistency

is reached.

Once the RBHF problem has been solved for the intrinsic state,

then states of good angular momentum are obtained by projection

using standard techniques. It should be noted that we project from

the uncorrelated state. The problem of projection from the corre-
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lated states has not yet been solved. However, for most of

the properties which will be discussed here it is felt that

this deficiency will not be too significant.

The RBHF method is known to provide very reliable predic-

tions of nuclear separation energies. In the case of deformed

nuclei one is generally resigned to the use of the "intrinsic

separation energies" for comparison with experiment. It is well

known that the rotational motion of the nucleus will affect

these energies. A method for obtaining more physically meaning-
UO)

ful separation energies has been suggested to us by D.J. Rowe.

If one assumes a purely rotational spectrum and that KoopmansT

theorem is valid (which has been discussed by R.L. Becker and

M.R. Patterson for RBHF^ '') then one can show that the corrected

separation energy is given by

p —
£•

where Q • is the intrinsic separation energy and J^_^ is

the total angular momentum of the (A-l) particle system in its

ground state.

APPROXIMATIONS

The program for obtaining the deformed G-matrix outlined

in the previous section is quite ambitious, and will normally

be carried out subject to certain simplifying approximations.

The crudest of these is to ignore Av completely in obtaining
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/ ' (o)

G12> i«e., set G^2=G12 * Some measure of the effect of AV

can be obtained by including it in the definition of L[ , so that

(17)

A more consistent approximation would be to treat A V per

turbatively, using

r
(18)

Calculating the matrix elements of U by means of Eq. (13)

may be greatly simplified if certain approximations are made con-

cerning the energy dependence of the G-matrix. It is the excep-
/

tion, 0 -— Q,r , in the G-matrix which prevents one from using

closure with respect to the O -sum. For the present calculations

f c
Q. c is replaced by an energy independent of O , thus en-

*abling us to carry out the sums on k3 and 0 . This approximation

has been investigated by Davies and Baranger and found to be quite
(10)

reliable for light nuclei.

It is well-known that the particle-particle matrix elements
ft *' * ' - ' " • .-£~~i ti- « . _ . . ' - .^^ , , :';;

of -U are off the energy shell; howeveri calculations"are""simpli-

fied if the "on-shell" prescription is used. It is felt this-
(10)

will not affect the hole states significantly, and it is these

in which we are most interested.



(o) N
The matrix elements of G (<& ) which are required in

order to begin the self-consistency problem are obtained from

single-oscillator-configuration (SOC) calculations of the type

discussed by Dr., Becker in these proceedings. The SOC matrix

elements are obtained by first solving the .reference BG equation

with a shifted oscillator spectrum and the Eden Emery approxi-
i

mation for the Pauli operator, and then making Pauli corrections

to the reference G-matrix. The "off-shell" behavior of the

particle-particle matrix :elements was accounted for approximately

as in method (1) of Dr. Becker's presentation, and the shift para-

meter, C, was chosen so as to make the low-lying "particle" states

nearly self-consistent.

When the deformed nuclei of interest are of the semi-closed-

10 *? ft *^ 9
shell variety ( C, Si, S) one can carry out a SOC calculation

and secure a set of matrix elements of -G]_2 .( ̂ ° ) with which to

begin the RBHF problem. In this case the shift parameter and

"spherical-Pauli-corrections" probably give a reasonable approxi-

mation to the final values that would result from a self-consistent

calculation.

Unfortunately, the situation is not quite simple for an open
20 24

shell nucleus (e.g., Ne, Mg). Here the iterative procedure must
(o)

begin with matrix elements of G12 (^ ) for tne nearest closed-

shell or semi-closed-shell nucleus. In this case it is more im-

portant to make the Pauli corrections. If they are ignored one

must rely on trends of shift parameters in other nuclei to



15

determine shift parameter for the nucleus of interest.

RESULTS

Reaction matrix elements have been calculated as functions

of the starting energy for the Hamada-Johnston (HJ) and Reid

soft-core (RSC) interactions assuming spherical configurations

for l^C and ^o, and used to calculate (J. for the first

iteration in the solution of Eq. (11). Intrinsic and projected

properties of C, 0, and Ne have been calculated using the

two interactions referred to above3 The RBHF equations are

solved subject to the conditions that the intrinsic states possess

axial symmetry and that the single-particle orbitals be four-fold

degenerate. Whenever possible the results are compared with the

calculations of Zofka and Ripka (ZR) obtained with a density-
(4)

dependent interaction, and those of Lee and Cusson (LC) obtained

with a velocity-dependent interaction.

Results for ^C have been obtained using both JT and

<T» ̂  /2*$- as approximations to the intrinsic Hamiltonians, with

, from experiment. The lowest-energy self-

consistent solution possesses an oblate shape. Intrinsic proper-

12
ties of C are presented in Table!. Expectation values are with

respect to the uncorrelated intrinsic wave function. For both

interactions the corrected Hamiltonians yield lower absolute

values of binding energies and seperation energies, and larger

radii and deformations; (defined as Oj. = \Qj-//X.r ^ ). The binding

energies are generally in good agreement with experiment and the
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radii are slightly low compared to experiment. Both the ZR

and LC predictions yield lower binding energies, and although

LC obtain good agreement for the radius, ZR overestimates the

radius by about 1270. Both the ZR and LC results yield larger

radii and deformations than RBHF. The occupation .probabilities

are all of the order of 8070. The separation energies predicted

by RBHF were obtained using Eq. (16), and while all of the results

are in good agreement with experiment, the results obtained with

the HJ interaction and Jrf — "K v /Z^ are closest to the

measured values. Results with density-dependent and velocity-

dependent HF underestimate and overestimate, respectively, the

energy of the most tightly bound positive parity state. Know-

ledge of the gap size enables us to determine the energy of the

i o '
first unoccupied orbit in C to be roughly 5MeV; this is in

good agreement with the measured separation energy of the last
10

neutron in C. This is to be expected, as pointed out earlier

by Dr. Becker, since an analogue of Koopmans' theorem for separa-
(21)

tion, energies has been established for RBHF.

There are, of course, uncertainties regarding,the choice

of shift parameter. The effect of the shift parameter on various

intrinsic properties is demonstrated in Figure 2 where the cal-

culations .were made using the RSC interaction. It is noted that

the energies increase linearly with choice of C-value (in this

range), however the size and deformation is not affected appre-

ciably.
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Solutions other than the ground state were also obtained

self-consistently. These are shown in Figure 1, and were

obtained with the HJ interaction and with!the intrinsic Hamil-

tonian, J\ * The lowest prolate configuration is found to lie

at about 7 MeV which is very near the measured 0 excited state

at 7.65 MeV. A spherical 0+ state is found at .about 10 MeV,

and another prolate solution is predicted at about 19 MeV.

Physical states of the nucleus are obtained by projecting
j

states of good angular momentum from the uncorrelated intrinsic

wave function. The projected energies are not presented since

such a calculation would require the projection from a correlated

state, or the construction of an effective interaction. Both

of these methods are presently under investigation. The proper-

ties which may be obtained from consideration of single-particle

operators are shown in Table 2. The results do not differ signi-

ficantly for the two interactions used and it is noted that moments,

E2, and E4 rates are larger when J\ - = J-| -̂ /̂zM- The pro-
(/W

jected HF results of LC are all bigger than the largest of the

RBHF results. However this is expected since their radius and

deformations are larger. Another consequence of these differences

is that the electron scattering form factors of Lee and Cusson

are slightly better than the projected RBHF calculation. The

(23) (24)
elastic and inelastic electron scattering are shown in Fig-

ures 3 and 4. The Born approximation has been used to obtain

the curves which are compared with experiment. None of the cal-
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dilations give particularly good results for the elastic scat-

tering, but the inelastic form factors are fit rather well. The

RBHF results with the HJ interaction and the largest deformation

yield the best fit obtained with our wave functions; they are,

however, too low by about 2070. In figure 5 the single particle

densities are compared for the HJ and RSC interactions. The wave

functions with the largest deformation and radius was used for

each case.
/

The agreement between theory and experiment for separation
-I f)

energies, size, deformation and electron scattering for C sub-

f ot» 2+, i
(24,26,27)

stantiates the rotational character of GI> 2^, 4^ as has been

suggested recently by several authors,

There has been a large number of BHF and RBHF studies which

have included 0> so we feel that it is not necessary to include

a detailed discussion of it here. However, for completeness a

comparison of BHF and RBHF calculations is included in Table 3

for two oscillator lengths in order to demonstrate how various

properties are affected. The RBHF results are better, as expected^

and the radius increases with oscillator length. The RBHF single

particle energies are in good agreement with experiment, while

the ZR and LC results differ considerably from experiment for the

most tightly bound state. Efforts to obtain a deformed excited

0 state in 0 have thus far been unsuccessful. This state has

been found, in standard HF studies, to be a 4p-4h state lying

some 20-25 MeV above the ground state. The 4p-4h states which
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we have investigated so far have been very unstable.

Of the even £ - even N nuclei in the s-d shell, 20Ne has

proven to be most amenable to description by means of standard

HF theory. The various properties of this nucleus that are pri-

marily long range in character may be obtained with good accuracy

from a prolate intrinsic state with a rather large hexadecapole

moment. Those properties primarily short range in character

are usually not reproduced very well.

Our results for the prolate shape are compared with experi-
(25) (5) , '

ment and with the results of Lee and Cusson (SP energies are

also compared with ZR) in Table 4. The binding energies agree

for RBHF and velocity-dependent HF (VDHF), but are below the ex-

perimental value of 8.2 MeV. Of course the predicted results

for binding energy will change considerably upon projection.

The radius and deformation are lower for RBHF in spite of the

fact that an oscillator length of 1.88 fm. has been used for the

RBHF calculations while LC use 1.67 fm. The single particle '

energies differ greatly for RBHF and VDHF, but the density de-

(4 )
pendent calculation of Zofka and Ripka yields results close

to ours except for the most tightly bound state0 Unfortunately

there .are no measured values for separation energies in Ne.

The projected properties underestimate the measured moments

and E2 rates, and are also smaller than the LC results. Some

improvement in the 2^Ne results is expected when the Pauli and

spectral corrections are made.
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DISCUSSION

The aim of many-body theory is to provide a truly micro-

scopic description of finite nuclei, and further to allow

prediction of nuclear properties with as few approximations as

possible. Of course a study of the type made here for deformed

(12,)
nuclei, and elsewhere for spherical nuclei , has elements

of phenomenology introduced through the two-body interaction

and the shift parameter. However, these are necessary steps

required to gain an understanding of the connection between

"realistic" interactions and nuclear phenomena. j

Overall agreement with experiment, after accounting for

the various approximations, is fairly good. As in the case of

spherical nuclei, however, saturation is not achieved and the

nuclei are underbound. This seems to be a defect of BHF theory

as currently formulated or employed. One possibility is that

three-body clusters are necessary to achieve saturation--- indeed,

such consideration led Negele to adjust his potential phenomeno-

(3) (7)
logically to fit nuclear matter. It has been suggested by Bethe

that such a technique be employed in BHF calculations. But until

self-consistent Pauli corrections are included in BHF calculations,

the question cannot be firmly answered. It is not unreasonable,

for instance, to believe that the density-dependence employed by

Negele , Meldner • , and Zofka-Ripka arises from the action

of the operator in the BG equation, and that this is poorly

approximated by current techniques.
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One of the limitations of the present calculation is that

uncorrelated states are used to calculate nuclear properties.

Improvement in the agreement with experiment can be expected
; (29)

when this limitation is removed . . A precise theory for de-

formed nuclei will have to be developed for this purpose, how-
(•

ever, inasmuch as our present methods, while based on successful

HF studies, cannot be rigorously defended for BHF calculations.

In spite of this it seems apparent that the deformations pro-

duced by HJ and RSC forces are inadequate to account for experi-

mental observations. The successful results obtained by LC

with the Saunier-Pearson force (which is adjusted to fit two-

body data and nuclear matter) therefore tend to reinforce Bethe's

suggestion that BHF calculations for finite nuclei should be

made using an interaction which has been shown to be successful

in BHF calculations for nuclear matter.
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TABLE CAPTIONS

Table 1. Intrinsic.properties of 12C. In the RBHF calculation

b=1.57J-*vi. and "It /2I=0.74 MeV; ZR used b=1.67 |m,

and LC used 1.54 4-m .

Table 2. Projected properties of 12C. In the RBHF calculation

b=1.57 £m, and 4 /2I=0.30 MeV; in the LC calculation

Table 3. Intrinsic properties of 1&0. The Hamada-Johnston force

was used in all BHF and REHF calculations.

Table 4. Intrinsic and projected, properties of 20Ne. The RBHF

calculation was made using the Hamada-Johnston force

$t- = 2r — k J" /2$) "fe IzA - 0,74 MeV, and b=1.88
n

and LC used -b=l.6 7
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FIGURE CAPTIONS

Figure 1. Energies of the self -consistent RBHF solutions
using the HJ interaction.

Figure 2. The behavior of various intrinsic properties of -C
as a function of the shift parameter 0 The RBHF
calculation was performed with 0=1.57 4-rn, and

"- IzS- <?,74MeV; £, is £he -binding energy of
the. lowest orbit, R, the uncorrected single-particle

r.m.s.. radius, and OL= >-Qu//^r
L^ the L-pole

deformation.

Figure 3. Experimental and calculated elastic form factors
for the scattering of electrons from 12c.
( - • - -, RBHF with HJ interaction), ( ---- ,
RBHF with RSC,), and ( - • - ,Lee-Cusson).

Figure A. Experimental and calculated inelastic form factors
for electron scattering from î C. ( - — ,RBHF
with HJ interaction and # - "k 3z/2.4}, ( ---- ,RBHF

with RSC interaction and $ -"feVŷ ), ( — — • - ,

RBHF with HJ interaction .and H), and (
Lee-Cusson-).

Figure 5. Radial variation of the nuclear density of c. The
RBHF -calculations are performed with b=1.57+-m. and

i



TABLE 1

INTRINSIC P R O P E R T I E S

-E/A,
MeV

A,
MeV

fr2)1'2.
FM

(rT-
FM

62

64

(ml PX)
ex-
MeV

c,
MeV

HAMADA-JOHNSTON

H

-7.28

10.59

2.39

2.52

-5.43

0.507

d/2+, 0.782)
-37.45

(3/2", 0.796)
-17.84

d/2", 0.818)
-16.44

45. 257

H - h2J2/2I

-7.26

11.78

2.41

2.54

-5.76

0.625

(l/2+, 0.782)
-36.96

(3/2", 0.795)
-17.39)

d/2", 0.819)
-16.83

45.257

REID SOFT CORE

H

-7.53

11. 24

2.36

2.48

-5.38

0.493

(l/2+, 0.830)
-40.26

(3/2", 0.819)
-19.43

d/2", 0.837)
-17.90

44.0

H - h2J2/2I

-7.48

12.52

2.38

2.49

-5.72

0.617

d/2+, 0.829)
-39. 63

(3/2", 0.818)
-18.91

d/2", 0.838)
-18.27
44.0

ZOFKA-
RIPKA

-6.4

9.8

2.68

-6.0

-30.8

-17.6

-17.6

LEE-
CUSSON

-6.3

13.9

2.47

-5.88

-48.4

-20.8

-20.1

EXPT

-7.7

2.40*0.03

-38. 3±1

-18. 8 JO. 5

-18.8*0.5

TABLE 2

P R O J E C T E D P R O P E R T I E S

R, FM

(O.?)'- 2+

FM2 4+

M. 2+
FM 4+

B(E2), 0+ - 2+

o2'™4 2+^4+

B(E4), 0+ - 4+

6 '™ 2+-4+

HAMADA-JOHNSTON

H

2.39

4.68

5.62

0.89

2.16

27.3

13.9

226.5

57.6

H - f)2J2/2I

2.40

4.94

5.85

0.98

2.68

30.7

16.14

348.6

88.5

REID SOFT CORE

H

2.35

4.52

5.43

0. 71,

1.98

25.32

12.77

188.4

48.1

H - Ti2J2/2I

2.37

4.76

5.65

0.90

2.48

28.52

14.87

296.5

75.6

LEE-CUSSON

2.43

5.32

6.38

1.02

2.75

35.4

18.2

393.0

116.0

EXPT

2. 4fctO. 025

41.814



TABLE 3

16r

b, FM

CALCULATION

-E/A, MeV

A, MeV

(r2}l/2

(m£Px)
ex-
MeV

C, MeV

1.57

BHF

6.2

18.0

2.29

(l/2+, 1. 0)
-56.7

(3/2", 1.0)
-30.0

(l/2~, 1.0)
-30.0

d/2', 1.0
-23.5

50.46 .

RBHF

7.3

16.9

2.40

(l/2+, 0. 79)
-43.9

(3/2", 0. 80)
-21.3

d/2", 0.80)
-21.3

(1/2". 0.80)
-17.0

48.64

1.77

BHF

6.2

17.2

2.38

(l/2+,1.0)
-54.9

(3/2", 1. 0)
-28. 3

d/2", 1.0)
-28.3

( 1/2", 1.0)
-22.6

42.62

RBHF

7.0

15.8

2.45

d/2+,0.83)
-43.6

(3/2", 0. 82)
-20.9

d/2", 0.82)
-20.9

d/2", 0.82)
-16.8

40.64

1.67

ZR

7.5

17.0

2.72

(+)
-37

(-)
-21

(-)
-21

(-)
-21

1.67

LC

7.9

20.6

2.52

(l/2+)
-64.1

(3/2")
-26.5

d/2")
-21.1

d/2")
-21.1

EXPT

7.98

2.6710.03

43i5

21.8

21.8

15.7

TABLE 4

RBHF

LC

-E/A,
MeV

7.4

7.4

A,

MeV

7.5

9.9

RZ.
FM

2.61

2.69

R/j,
FM

2.90

62

10.6

11.7

64

3.4

(mJr p »
eA' '
MeV

RBHF
d/2+,0)
-48.02
d/2", 0)
-28. 65
(3/2", 0)
-22.93
(1/2".0)
-20.41
d/2+,0)
-15.23

LC
d/2+)
-66.8
d/2")
-38. 1
(3/2")
-27.7
d/2")
-23.9
d/2+)
-16.0

ZR
(+)
-38
(-)
-27
(-)
-21
(-)
-21
(+)
-14

RBHF

LC

EXPT

R,

FM

2.72

2.80

2.80d0.05

H+.
FM?

-11.3

-13.1

-27±11

fe>4,
FM2

-14.5

-23.8

B(E2;0+-2+),

e2 • FM4

152.7

208.0

285i40

B(E2;2+-4+),

e2-FM4

77.3

82.0

128*13

B(E2;4+-6+),

e2 • FM4

66.9

92.1

95±11
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