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ABSTRACT

The renormalized Brueckner-Hartree-Fock (RBHF) theory
for many-body nuclear systems has been generalized to permit
calculations for intrinsic states hayi%g'éermanent defor-
mation. Both Hartree-Fock and Brueckner self-consistencies
are satisfied, and details of the numerical techniques are
discussed. The Hémadprohnéton interaction is used in a
-study of deformatioﬁs,,binding,fsize; and séparation eﬁer-
gies for several nuclei. Electrémagnetic transition rates,
moments, and electton sééttering fofm_factors are éalcu-
lated using nuclear wave functions obtained by angular
momentum projection."CohPariSonvis-made to experiment as
well as to predictions of ordinary and density-dependent

Hartree-Fock theory.
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INTRODUCTION

The connection between the nuclear many-body problem and

the prediction of properties of finite nuclei has become a

‘subject of great interest in the last few years. Advances in

computational technology have made it possible to drop the
"closed-shell-core" assumption which was common to most nuclear
structure calculationsfl) Thus it has become feasible to attempt
to bring the so-called "inert core" into active participation.
Our understanding of the properties of nuclei has‘been
extended significantly by the Hartree-Fock method and variations

thereof. The HF approach is of course a very natural starting

point for microscopic studies of nuclear systems because of its

simplicity .and because it gives, by definition, the besthindefv

pendent-particle basis for the nucleus. HF calculations, in the

tInvited paper presented to the Symposium on '"Present Status

and Novel Developments in the Many-Body Problem" (Rome,
September-19-23, 1972), to be published in the Proceedings.
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past, have been restricted to the use of (1) phenomenological
effective interactionéz) or (2) effective interactions based
directly on nuclear matter~calcu1ation$£3) Such interactions
have been used in studies of both spherical and deformed nuclggf
Some of the more recent calculations using interactions of the
latter type have been quite successful in predicting a large
number of nuclear'propertieSSS)

Although such studies have been invaluable in contributing
- to our knowledge of nuclear structure, one would nevertheless
prefer to begin with a "realistic™ nuéleon-nucleon interaction
and; with as few approximations as possible, calculate nuclear
propefties based on a many-body theory. The initial framework
for such an approach was provided by the pioneering work of
Brueckner and Golds;oné6), which was followed by a large number
of papers clarifying their theory and extending it beyond appli-
cations to nuclear-matterf?) There still remain uncertainties
in the many-body ‘theory because of a lack of undefstandipg of
the two-bedy interaction and some questions regarding the im-
portance of higher-order Brueckner-Goldstone diagrams and
three-body clustersfs) However, if one hopes to understand
the structure of nuclei in'terms-éf a true microscopic picture,
a Brueckner-Hartree-Fock (BHF) calculation seems to be the most
reasonable approach presently available.

Application of the BHF methods to finite nuclei was first

(9) ,
carried out by the Oak Ridge groups. They investigated
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spherical, closed shell nuclei, and it was demonstrated by
‘Davies et.al. that self consistent BHF calculations could be
made easily and reliably, although they found the nuclei to
be underbound and too smallflo} The inclusion of higher-order
diagrams, representing occupation probabilities, in BHF cal-
culations by Becker led to substantial improvement in the
single-particle energies, and it was fouhd that depletion
factors for normally occupied single-particle’orbits are ofg
the order of 15 percentfll) Subsequently Davies and McCarthy
showed that the binding energies also improve when these
higher-order diagrams are includedSIZ)

Until recently Brueckner-type calculations were restricted
to infinite nuclear matter and spherical closed-shell nuclei,
Howeber, since most nuclei do not fall in this class, it is
of interest to extend the BHF approach to include nonspherical
and/or opeﬁ-shell npclei. The 1light deformed nuclei provide
a good starting point for a study of this nature, since the
"number of particles involved is small enough to keep the problem
tractable and the simple HF approximation is sufficiently well
understood to provide~guidélines for what is recognized to be
a rather complicated problem.

The aim of this paper is to indicate how one goes about

doing such a complicated calculation, to poeint out some of
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the conceptual difficulties which arise for the case of deformed

nuclei, and then to discuss some results for several light

deformed nuclei. Some preliminary .accounts of this work have
(13)

been reported previously.

BRUECKNER THEORY FOR DEFORMED SYSTEMS

The application of Brueckner theory to spherical closed-
shell nuclei is relatively straight forward, since the uncorre-
latéd ground states of such nuclei are simple and have good
~angular ‘momentum. The single-particle Hamiltonians are there-
fore rofationally invariant, and standard techniques may be
"used to obtain a relative Bethe-Goldstone (BG) equation. Details
of such Brueckner and BHF calculations have been presented
by Becker, MacKellar, and Morrisfg) and by Davies and McCarthySlO)

On the other hand, the treatment of open-shell nuclei is
not at all simple. The formalisms developed thus far for nuclei
with several particles outside.a -core involve either an energy-
dependent effective Hamiltonian (Block-Horowit;14) and Feshbach§ 55,
" or more recently an energy-independent effective Hamiltonian
arrived at by folded-diagram techniques (Baranger and Johnsonfl6)
and Kuo, Lee, and Ratcliff). While these techniques are ex-
tremely valuable in providing a formal basis for the shell model,
they .are complicated in practice'and‘it-is at present desirable

to look elsewhere for simpler means of calculating properties

of open-shell nuclei.



The theory of rotational nuclei has been aided considerably
by the concept of a deformed intrinsic state, and the present
paper provides the first detailed discussion of Brueckner theory
for nuclei for which such a model is reasonably valid. The for-
mulation is restricted to the simplest case, that in which there
is an isolated rotational band. We employ the approximation
in which the states of good angular momentum in the band are
Oobtained by projection frém a single deformed, intrinsic state,
This method appears promising because the simpler HF calculations
with effective interactions have demonstrated that such projected
wave functions yield reasonable dynamic as well as static pro-
perties of light nuclei.

Our approach is based on the non-degenérate Brueckner-
Goldstone-Brandow renormalized  linked-cluster expansion (LCE),
starting from a deformed, determinantal, intrinsic state,q:aK s

which is an eigenstate of an unperturbed Hamiltonian,JAL R

con-
taining a deformed self-consistent field,IJ . The LCE generates
from 4§K a correlated, exact eigenstate, ﬂTK , of an intrinsic
Hamiltonian,_H‘:n'=Ho + Hj. In order that dh< may be a linear

‘combination of the various states, dzf of the rotational

M b

band, the iE}M must be degenerate in intrinsic energy; so we

define

Ho=H- Pl KT

(1)
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where the proper choice of moment of inertia,\ﬁ , involves
a self-consistency requirementflS) Subtraction of the trans--
lational and rotational energy. operators is impertant for con-
~P%A

vergence of the LCE. However, the effect of Z2Am on é&k
is not very great, and for light nuclei is almost cancelled by
the Coulomb correctioen. We therefore treat these terms in |
 first-order perturbation theory. Thé rotational ehergy, however,
is expected to have an influence on the deformations, and con-
sequently -should be treated exactly.

The addition of the correction terms of course makes the

BHF problem more complicated. In this case the Brueckner reaction

matrix satisfies the equation

/ ' .y / CQ é}

1l = VU, ~ Ulz.L: — 244 (2)
12
where lﬁz,== U;z - :g.éu 2 .—.ZG;, 1“2 9 a
/ / /
‘l‘2~ ‘+ le )
2
/ - -2 2
and = L3*. U -7 _k ! (3b)
Ll' 2m P ZAmP 2d j

Here the Pauli operator, (Q , prevents scattering into occupied

states, U, is a nucleon-nucleon interaction having short range

12

- —
repulsion, and jl and p; are the single particle total angular

and linear momentum respectively. For each different matrix ele-

/
ment of Gyo(w ) in the final HF representation, the starting
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energy is a -sum of single-particle energies which are cal-
culated from G{é in the course of achieving self-conéistency.
A Bethe-Goldstene (BG) equation appropriate to G;Z is obtained
in the usual fashion by:defihing a ‘correlated two-particle wave

function ﬂﬂz '« The equation is of the familiar form

: Vi d
’
Ve 4{2 w) . )

b, =
:z(“J) = q%Z - hl-—du
12

However the solution of tﬁis equation is substantially more diffi-
cult than the standard BG equation because the one-body Hamiltoen-
ians appearing in the G?eens' function are no loﬁger rotationally
invariant. Furthermore, the Pauli operator deﬁends on orbitals

/

which are now deformed. Finally, U, depends on A and \g/ , and

12,
hence varies from nucleus to nucleus.
Since a direct solutien of Equation (2) is impractical, we

, v /
shall. generate the matrix elements of Gy (0 ) by means of a

two-step process. We begin by considering a reference equation

which only invelves rotationally invariant objects

/ / Q(O)
Gaz(w) = U, ~ 12,11 @ 244 (5)

oy = by

2, )
Here L.' = 2‘_1;1 P',. + U, )
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/
and Q(o) are chosen to resemble hy and Q as much as possible

and yet leave a soluble problem; i.e., harmonic oscillator fun-

(9).

0
ctions are used and 1J| is a shifted oscillator well

/
Having found Gjo(W ), we may obtain Gyp (& ) from the relation

- (©)
/ | Q Q /
Qt‘z(w) = G‘ LW G‘z(w) n - = Guf"")

12" ® L‘s'z"“ (6)

either by iteration or inversion. (Note that the dimensions
of the matrices to be inverted are very large, because of the
deformation of the orbitals.)

We still have a problem, however, in that Gjo(w ) changes
from nucleus to nucleus because of the dependence of zﬁé on A

.and . This d;fficulty can be circumvented by considering

instead the quantity'Gig)(u) ) which satisfies

(0) . QP A,
= - (w) .,
2 (w) - U:Z U; G )

2 h _ 12 (7)

w
12

(o

It is clear that Glz)(au ) is the usual G-matrix constructed for
calculations on spherical nuclei, and is valid for any nucleus

in the chosen model space.' From it, by means of a transformation

(19)

similar to the Gell-Mann-Goldberger two-potential theorem °,

e may obtain Gyo(ed ) as follows:

C G(o) ‘°’ )
P = 2 (W) +

~ (©)
h o G'zcw) (8)




) ’
where &9 : ’ Cgo
%0 = [ 1 - V (9)
12
oy ) o)
and V = AV‘-" i + Q G 29 1, (10)

! / LL‘Z w

z - -
Av = 3-(}:(}2" P‘ Pz
' These equations appear somewhat formidable,.especially since a
- matrix inversion is required. HoweVér, we observe that all the
quantities involved are rotatioenally invariant so the matrices
are block-diagonal in J as well aé parity and isospin. Conse-
quently the manipulations may be carried out on the coupled matrix
elements with little compUﬁational effort. Thus we have all
that is required to obtain Gjp( W ) and begin the self-consistency
problem. (It should be noted that an exact evaluation of Egs,
8-10 must include those matrix elements -coupling te outside the
model space and back again. Traditionally these are tacitly
ignored, and all matrix multiplications and inversions are carried
out within the model space. The same remarks apply to evaluation
of G1; and U .) |

The set of self-consistent equations te be solved are

| A
z [alTIb> « CalUIbDIE = el
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where the coefficients C&'express the deformed orbitals in terms

of a spherical oscillator representation, that is,
SR
k
 Note that the eperator T in Eq. (11) differs from the one ordi-

narily ($2/2m) used in HF calculations [-see Eq. (3b)/:
' 2 -a‘
- "2
T s (A)py, - KT
)5, - &

The method of Davies, Baranger, Tarbutton, and Kuo may be

/
used to obtain the matrix elements of IJ in terms of Glz(o) ):

<o~lUH=>‘.= é—[(o.lullb> ¥ (BIUIIO->]

(12)
with ‘ '
< T A ! (13)
. T ¢ 1
<alUlb) = 2.h PIPIL @ G b Skl Gegr el
3]
kaky $ 8 A
_ X ck.a C!o £k4 .
The RBHF'single particle energy 6%;5 = E%( unless ¥ 1is a
particle and 5 a hole, in which case 83,5 = 83 o Px is

the occupation probability for orbit A The structure of U
results in a double self-consistency requirement: the orbitals

‘A are eigenstates of (T' +U), and U itself depends on the ener-
gies of the filled orbitals. It therefore appears that, in order
to do BHF correctly, we must recalculate the reaction matrix after

each iteration in a self-consistency procedure. Fortunately this
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can be avoided by the technique intréduced.by McCarthy .and Davies ,-
in which each matrix element .of G is expressed as a power series:
: N n
<Gr(w)> = Z Anu’)
n=| (14)
If the reaction matrix is calculated for several starting energies,
the coefficients A, may be obtained by a suitable fitting procedure.
Once the reaction matrix is obtained.as a function of starting
energy, it would be possible .after each iteration in the BHF problem
to use equation (6) to make the Pauli corrections. As mentioned
-earlier, since J is hot sharp thelmatrices involved ére-very,large,
so that -a solution by matrix inversion-is impractical. Happily,
it has been found that the once-iterated form of (6) is quite ac-
curate for light nuclei. Consequently .an acceptable procedure would
be to make use of Gjp(w ) for G1;(GQ ) on the first.iteration, and
thereafter to precede each iteration by an "orbital correction” to
the previous G12(°° ). 'This would continue until self-consistency .
. 1is reached.
Once the RBHF problem has been solved for the intrinsic state,
then states of good angular momentum are obtained by projection
- I -
“I;M = Ft)vﬂ( @K ' (15)
+using standard techniques. It should be noted that we project from

the uncorrelated state. The problem of projection from the corre-
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lated states has not yet been solved. However, for most of
the properties which will be discussed here it is felt that
this deficiency will not be toe significant,

The RBHF method is known to provide very reliable predic-
tions of nuclear separation energies. In the case of deformed
nuclei one is generally resigned to the use.of the "intrinsic
separation energies" for comparison with experiment. It is well
known that the rotational motion of the nucleus will affect
these energies. A -method for obtaining mere physically meaning-
ful separation energies has been suggested to us by D.J. RowefZO)
If one assumes a purely rotational spectrum and that Koopmans'

theorem is valid (which Bas been discussed by‘R.L; Becker .and
M.R. Patterson for RBHF(za))’then one can show that the éorrected
separation energy is given by

g, = € ;Z EA f'l) (16)
where EBé is the intrinsic separatioﬁ energy and Ja-1 is
the total angular momentum of the (A-1) particle system in its
ground state.

APPROXIMATIONS

The program for obtaining the deformed G-matrix outlined
in the previous section is quite ambitious, and will normally
be carried out subject to certain simplifying approximations.

The crudest of these is to ignore A\fc0mp1etely in obtaining
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/ /(o) ,
G12, i.e., set G12=G;, . Some measure of the effect of AV

can be obtained by including it in the definition of Ll s so that

ocC

@lUIby — <alUlbd - 2 <Al % fdalbn)

(17)

A more consistent approximation would be to treat A V per-
turbatively, using

(o) : B P, .'

| Q .
G,z(w) = G (w)+ [1+ G (w) ;___k-‘: AV B

Calculating the matrix elements of U by means of Eq. (13)
may be greatly simplified if certain approximations are made con-.

cerning the energy dependence of the G-matrix. It is the excep-

/
tion, 5~ e’S , in the G-matrix whlch prevents one from using
closure with respect to the 8 -sum. For the present calculations
/ .
63315 ~is replaced by an energy independent of 3 , thus en-

abling us to carry out the sums on k3 and 5 . This approximation
has been 1nvest1gated by Davies and Baranger and found to be quite
reliable for light nuc1e1§10)

It is well-known that the particle-particle matrix elements
of il are off the energy shell; however:“calculatlons are s1m§11-
fied if the "on-shell” prescrlptlon_ls used.(lég is felt thls-f

will not affect the hole states significantly, and it is these

in which we are most interested.
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The matrix elements of Gy, (w) which are required in
order to begin the self-consistency problem are obtained from
single-oscillator-configuration (SOC) calculations of the type
discussed by Dr. Becker in these proceedings., The SOC matrix
t elements are obtained by first solving.the reference BG equation
with a shifted oscillator.spectrum and the Eden Emery approxi-
mation for the Pauli operétor, and then making Pauli corrections
to the reference G-matrix.‘ The "off-shell" behavior of the
particle-particle matfix;élements.was accounted for approximately
as in method (1) of Dr. Becker's presentation, and the shift para-
meter, C, was chosen so as to make the low-~lying "particle" statés
nearly-self-consiétent.

When the deformed nuclei of interest are of the semi-closea-,
shell variety (12C,28814328) one can carry out .a -SOC calculation
and secure a set of matrix elements ovaléo)(éo ) with which to
begin the RBHF problem. In this case the.shifﬁ parémeter and
"gspherical-Pauli-corrections™ probably~give a reasonable approxi-
mation to the final values that would result from é self-cons@stent

calculation.

Unfortunately, the situation is not quite simple for an open

24 _
shell nucleus (e.g.,zoNe, Mg). Here the iterative procedure must

(0) . o
begin with matrix elements of Gy, (& ) for the nearest closed-
shell or semi-closed-shéll nucleus. In this case it is more im?

portant to make the Pauli. corrections. If they are ignored one

must rely on trends of shift parameters in other nuclei to
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determine shift parameter for the nucleus of interest.
RESULTS
Reaction matrix elements have been calculated as functions
of the starting energy for the Hamada-Johnston (HJ) and Reid
soft-core (RSC) iﬁteractions-assuming'Spherical configurations
for 12¢ andAlGO; "and used to calculate Li for the first
iteration in the solution of Eq.. (11). Intrinsic and projected
properties of 12C,16O, and 20Ne have been calculated using the
two interactions referred to above. The RBHF equations are
solved subject to fhe conditions that the intrinsic states possess
axial symmetry and that the single-particle orbitals be four-fold
degenerate. Whenever possible the results are compared with the
calculations of Zofka and Ripka (ZR) obtained with a density-
dependent interactionf4)and those of Lee and Cusson (LC) obtained
with a veloc1ty dependent interaction.
Results for 12C have been obtained using both 34 and

jq *iJ;ég{ as approximations to the intrinsic Hamlltonlans, with

ffyé‘g)=ﬁq,74¢hﬁel( from experiment. The lowest-energy self-
consistent solution possesses an oblate shape. Intrinsic pro?er-
ties of 120 are preserited in TableioA Expectation values are with
respect to the uncorrelated intrinsic wave function. For both
interactions the corrected Hamiltonians yield lower.absolute
values of binding energies and seperation energies, and larger

° J
radii and deformations: (defined as ég.=’<c%r>/2f D ). The binding

energies are generally in good agreement with experiment and the
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" radii are slightly low compared to experiment. Both the ZR
and LC predictions yield lower-binding energies, and although
LC obtain good agreement for the rédius, ZR overestimates the
radiuslby about 12%. Both the ZR and LC resﬁlts yield lafger
radii and deformations than RBHF. The occupation  probabilities
are all of the order of 80%. The separation energies predicted
by RBHF were obtained using Eq. (16), and while alllof the results
are in good agreement with experiment, the results obtained with
the HJ interaction and ]‘{- ﬁzjz/zéf are clesest to the
A measured values. Resu}ts with density-dependént and velocity-
dependeht HF underestimate and overestimate, respectively, the
energy of‘the most tightly bound positive-ﬁarity state. Know-
ledge of thé gap size enables us to determine thevenergyiof the
first ‘unoccupied orEit in 120 to beAroughly 5MeV; this iS'in
good agreement with the measured sepération energy of the last

_ 13, .

' neutron in . This is to be expected, as pointed out earlier

by Dr. Becker,“since én analogue of Koopmané' tﬁeorem for separa-
'fionienérgies has be;n established for‘RBHFEZI)

There are, of cbﬁrse, uncertéintiés reéarding.the~choice
 of shift parameter. The effect of the shift'pérémeter on various
intrinsic properties is demonstrated in Figufe 24wﬁére'the cal-
culations,Weré made using the RSC interaction. It is noted that
the energies increasetlinearly-with choice of C-value (in this

range), however the size and deformation is not affected appre-

ciably.



17

Solutions other than the ground state were also obtained
self-consistently. These are shown in Figure 1, and were
obtained with the HJ interaction and with!the intrinsic Hamil-
~tonian,.j/ » The lowest prolate configu;ation is found to lie

at -about 7 MeV which is very near the measured 0" excited state
at 7.65 MeV. A -spherical O ‘state is found at about 10 MeV,
aﬁd another prolate solution is predicted at about 19 MeV.
Physical states of the nucleus are obtained by projecting
states of good angular momentum from the uncorrelated iﬂtrinsic‘
wave function. The projected energies are not presented since
such a calculation would require the projection from a correlated
state, or the construction of an effective interaction. Both
of these methods .are presently under investigation. The proper-
ties which may be ebtained from consideration of single-particle
operators are shown in Table 2. The results do not differ signi- .
ficantly for the two interactions used and it is gpted that moments,
E2, and E4 rates are larger when Jﬂ;~ = }4"*53)Q4{ The  pro-
jected HF results of LC are all bigger than the largest of the
RBHF results. However 'this is expected since their radius and
deformations are larger. Another consequence of these differences
is that the electron scattering form factors of Lee and Cusson
are slightly better than the projected RBHF calculatioen. The
elastiéZB)and inelastiéza) electron scattering are shown in Fig-

ures 3 and 4. The Born approximation has been used to obtain

the curves which are compared with experiment. None of the cal-
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culations give particularly gooed results for the elastic scat-
tering, but the inelastié form factors are fit rather well. The
RBHF results with the HJ interaction and the largest deformation
yield the best fit obtained with our wave functions; they .are,
‘however, too low by about 20%. in figure 5 the single particle
densities are compared for the HJ and RSC interactions. The wave
functions with the lérgest deformation and radius was_uéed for
each case,

The aéreement between theory and experiment for separation
: energies, size, deformation and electron scattering for 12¢ sub;
stantiates the rotational character of OI, 2{, 4{ as has been
suggested recently by several author5524’26’27)

There has been a large number of BHF .and RBHF studies which
have included 16O, so we feel that it is noet necessary to include
a detailed discussion of it here. However, for completeness a
~COmpari50n of BHF .and RBHF calculations is included in TableA3
for two oscillater lengths in order to demonstrate how various
properties are affected. The RBHF results are better, as expected;
and the radius increases with oscillator length. The RBHF single
ﬁarticle energies ére in good agreement with experiment, while
the ZR and LC results differ conéiderably from experiment for the
most tightl? bound state. Efforts to obtain a deformed excited
O+‘state in 16O have thus far been unsuccessful. This state has

been found, in standard HF studies, to be a 4p-4h state lying.

some 20-25 MeV '‘above the ground state. The 4p-4h states which
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‘we havg investigated ;o‘far have been very unstable.

Of the even Z - even N nuclei in the s-d shell, 20Ne has
proven to be most amenable to description by means of standard
HF theory. The various,prbperties of this nucleus that are pri-
marily long range in character may be obtained with good accuracy
from a prolate intfinsic state with a rather large hexadecapole
moment, Those-preperties-primarily short range in character
are usually not reproduced very well.

Our results for the prolate shape are compared with expéri—
ment(zs) and with the results of Lee and Cuésoés) (SPlenergies are
also compared with ZR) in Table 4. The binding energies agree
for RBHF and velocity-dependent HF (VDHF), but are below the ex-
perimental value of 8.2 MeV. Of course the predicted results
for binding energy will change considerably ﬁpen pro jection,
The radius and deformation are lower -for RBHF in spite of the
 fact that an oscillator'length of 1.88 fm. has been used for the
RBHF calculations while LC use 1.67 fm. The single particle
‘energies differ greatly'for_RBHF-and VDHF, bﬁt the density de-
(4)

pendent calculation of Zéfka and Ripka yieldsvresults-close
to ours except for the most tightly'bound state. Unfortunétely
there are no measured values for separation energies in 20Ne.} |
The projected properties underestimate the measured moments
and E2 rates, and are also smaller than the LC results. Some

improvement in the 20Ne results . is expected when the Pauli and

spectral corrections are made.
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DISCUSSION

The aim of many-body theory is to provide a truly micro-
scopic description of finite nuclei, and fUrgher to allow
prediction of nuclear properties with as few approximations as
possible. Of course a study of the type made here for deformed
nuclei, and elsewhere for spherical nuciei(‘z), has elements
of phenomenolegy introduced through the twoe-bedy interaction
and the shift parameter; However, these are oecessary steps
required to gain an undorstanding of the connection between
"realistic" interactions and nuclear phenomena. ?

Overall agreement with experiment, after accounting for
the various approximations, is fairly good. As in the case of
spherical nuclei, howevor, saturation is not achieved and the
nuclei are underbound. This seems to be a defect of BHF theory
'as<current1y formulated or employed. One possibility is thot,
throe-body-olusters are necessary to achieve saturation--- indeed,
-suchiconsideration led Negele to adjust his potential phenoemeno-
logically to fit ouclear matterf3) It has been suggested by Bethé7
that such a technique be employed in BHF calculations. But until
self-oonsistent Pauli corrections are included in BHF calculations,
the question cannot be firmly answered. It is not unreaoonable,
for instance, to believe that the density-dependence employed by
Negele(3), Meldner(zs), ano Zofka-Ripka(A) arises from the action

of the operator CQ in the BG equation, and that this is .pooerly

approximated by current techniques.
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One of the limitations gf”the present calculation isfthat
uncorrelated states are used to calculate nuclear properties.
Improvement in the_agreemen?igifh experimént'c#n.be expected
- (29)

when this limitation is rembvéd‘ .« A‘precise theory for de-

formed nuclei will have to be developed for -this purpose, hbw-

i.
[

ever, iﬁasmuch as our preseht‘methods, while based on succeésful
HF'studiés, cannot be rigorously defended for BHF calculatigns,
In spite of this it seems appérént'that the deformations pro-
duced by HJ -and RSC fqrces'ére inadeqpaté“to accéunﬁ for experi-
mental observations. The sucéessful}results'obtained by‘LC:

- with the SaunierfPea;son fo;ce:(which is-adjusted to fit‘twé-
body_data.and ﬁﬁcleér'ﬁétéer)‘theréfdre ténd to reinfofcerﬁethe's
suggestion that BHF calculations for finite nuclei should be

made using an intgraétion'which‘has5been shown to be succeésful

in BHF calculations for nuclear matter.



22

REFERENCES

W.H. Bassichis, B. Glraud and G. Rlpka, Phys. Rev. Letters 15,
980 (1965); J. Bar-Touv and I. Kelson, Phys. Rev. 138B, 1035
(1965); T.T.S. Kuo and G.E. Brown, Nucl. Phys. 85, 4021966)

C.W. Nestor, K.T.R. Davies, S.J. Krieger, and M. Baranger,
Nucl. Phys. All3, 14(1968); F. Tabakin, Ann. Phys. (N.Y.)

- 30, 51(1964)

C.M. Shakln, Y.R. Waghmare, and M.H. Hull, Phys. Rev. 161,
1006 (1967); J.W. Negele, Phys. Rev. Cl, 1260 (1970).

M.,K. Pal and A.P. Stamp, Phys. Rev. 158, 924 (1967);
J. Zofka, and G. Ripka, Nucl. Phys. A168 65(1971),

P.H.C. Lee, and R.Y. Cusson, Ann. Phys. (N.Y.) 72, 353 (1972).

K.A. Brueckner, Phys. Rev. 100, 36 (1955); J. Goldstone,
Proc. Roy. Soc. A239 267 (1957)

See H.A. Bethe, in Annual Reviews of Nuclear Science (ed. by
E. Segre et. al., Annual Reviews, Inc., Pale Alte, 1971),

Vol. 21.

R.L. Becker, these Proceedings.

K.T.R., Davies, M. Baranger, R.M. Tarbutten, and T.T.S. Kuo,
Phys. Rev. 177, 1519 (1969); R.L. Becker, .A.D. MacKellar, and

" B.M. Morris, Phys. Rev. 174, 1264 (1968).

10.

11.

12.

13.

14.

K.T.R. Davies and M. Baranger, Phys. Rev. Cl, 1640 (1970).
Also Ref. 9.

R.L. Becker, Phys. Rev., Letters 24, 400 (1970); and Phys.
Letters.32B, 263 (1970).

R.J. McCarthy, and K.T.R., Davies, Phys. Rev. Cl, 1644 (1970);
and Phys. Rev. C4, 81(1971).

R.C. Braley, W.F. Ford, R.L. Becker, and M.R. Patterseon, :
Bull. Am. Phys. Soc. 16, 1165 (1971); W.F. Ford, R.C. Braley,
R.L. Becker, and M.R. Patterson, Bull. Am. Phys. Sec. 17,

506 (1972).

C. Block and J. Horowitz, Nucl. Phys. 8, 91 (1962).



23
15. H. Feshbach, Ann. Phys. 19, 287 (1962).
16. M.B. Johnson, and M. Baranger, Ann. Phys. 62, 172 (1971).

17. T.T.S. Kuo, S.Y. Lee, and K.F. Ratcliff Nucl, Phys. Al76,
65 (1971)

18. T. Skyrme, Proc. - Phys° Soc. (Londen) A70, 433 (1957).

19. M.L. Goldberger and K.M. Watson, Collision Theory (John Wiley
& -Sons, Inc., New York, 1964), p.202.

20. D.J, Rowe, private communication.
'21. R.L. Becker, and M.R. Patterson, Nucl. Phys. A178, 88 (1971).

22. G. Landaud, J. Yonnet, F. Lemeilleur, and P.U. Renberg,
Nucl. Phys. Al173, 337 (1971).

23, 1. Sick, private communication.

24, A. Nakada, Y. Torizuka, and Y. Horikawa, Phys. Rev. Letters
27 745 (1971), Erratum 27 1102 (1971) .

25, O. Hausser,.prlvate'communication.
26. H.C. Lee, to be published.

27. R.L. Becker, R.C. Braley, W.F. Ford _and M.R. Patterson, to
be published._ ' o

28, H. Meldner, Phys. Rev. 178, 1815 (1969).

29. C, Ciofi degli Attl, and A. Kallio, Phys. Letters 36B
433 (1971).



24

Table

Table

Table

Table

2.

TABLE CAPTIONS

Intrinsic propertles of 12¢c, In the RBHF calculation
b=1.57 pm and 'bL/ZI =0, 74 MeV; ZR used b=1.67 pm

and LC used 1. 54-pn1 .

Projected properties of 12¢, In the RBHF calculatlon |

b=1. 57-{%1 and ii /21—0 30 MeV; in the LC calculation

.b=1.54 .)Qm .

Intrinsic .properties of 160, The Hamada-Johnston force
was used in all BHF and RBHF calculations.

Intrinsic and projected properties.of 20ye, gThe RBHF
céléulation was made using the Hamada-Johnston force

j{:w: ]4 - tz‘]— 2/24) ﬁ /Zj = 0.74 MeV, and. b=1.88 ‘]PM o)

and'LCvusedﬂb=1;67 %L?.
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Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

FIGURE CAPTIONS

Energies of the self-consistent RBHF solutions
using the HJ interaction.

The behavior of various intrinsic properties of 12¢
as a function of the shift parameter. The RBHF
calculation was performed with b=1.57 4? m, and

(0 /Zad = 0,74 MeV; e‘ is the -binding energy of

the . lowest orblt,..Q_ the uncorrected single- partlcle

r.m.s.. radius, and . 3 {Q >/<y~L> the L-pole

deformation.
Experimental and calculated elastic form-factors
for the scattering of electrons from 12C,

(—————, RBHF with HJ interaction), (----,

RBHF with RSC),:and ( . ,Lee-Cusson).
Experimental and calculated inelastic form factors
for electron scattéring from g?c 45 ; RBHF
with HJ interaction .and- ﬁ'Jz/z ), (----, RBHF .
with RSC interaction and }4 'ﬁ? 3&&4), (—o . s
RBHF with HJ- 1nteract10n .and H), and (——-¢ —

Lee-Cusson).

Radial variation of the nuclear density of 12¢c, The
RBHF -calculations are performed with b=l.57.Fﬂh and

. o




TABLE 1
INTRINSIC PROPERTIES

HAMADA-JOHNSTON REID SOFT CORE ZOFKA- | LEE- EXPT
% > RI
H H - h232p21 H H- 21 | RIPKA | CUSSON
A, |-1.28° -7.26 -1.53 -7.48 -6.4 | -63 |[-1.7
MeV
A, 10.59 11.78 1.24 12,52 9.8 13.9
MeV
grz)uz' 2.3 2.41 2.36 2.38 268 | 2.47 |2.40:0.03
M
()4 2.2 2.54 2.48 2.49
M
5 -5.43 -5.76 -5.38 -5.72 -6.0 | -5.88
8 0. 507 0. 625 0.493 0.617
(mdl, Py | (112, 0.782) | (112, 0.782) | (V/2*, 0.830)| (112*, 0.829) | -30.8 | -48.4 |-38.3%1
&) -37.45 -36.96 -40.26 -39.63
MeV 1327 0. 79¢) [ 3127, 0.795) | (3127, 0.819) | (3127, 0.818) | -17.6 | -20.8 |-18.840.5
-17.84 -17.%9) -19.43 -18.917
(U2, 0.818) | (U2", 0.819) | (U2", 0.83n | (2", 0.838) | -17.6 | -20.1 [-18.840.5
-16.44 -16.83 -17.90 -18.27
c, 45.257 85,257 44.0 44,0
MeV
CS-64506
TABLE 2
PROJECTED PROPERTIES
HAMADA-JOHNSTON| REID SOFT CORE|LEE-CUSSON| EXPT
H o [H-02221 | 0 JH-n20221
R, FM 2.39 | 2.40 235 | 237 243 |2.4640.025
(o) 2 468 | 4.94 a5 | 416 5.32
FM 4t 562 | 5.8 5.43 | 5.65 6.38
(og) 2t 0.89 | 098  [0.7L| 0.9 1.02
M 4t 216 | 2.68 198 | 2.48 2.75
BE2, o0t-2*[27.3| 30.7 25.32 | 28.52 354 |48
2. Fmd
2 3.9 | 1614 1277 148 | 182
B(EA), 0% -4 226.5] 348.6 188.4| 296.5 393.0
ed - Fm8 + b
-4t 516 | 885 4.1 | 756 116.0

C§-64507




TABLE 3

160
b, FM 1.57 177 167 1.67
CALCULATION| BHF RBHF | BHF RBHF ZR |IC  {EXPT
-E/A, MeV  [6.2 7.3 6.2 7.0 7.5 (1.9 |[7.98
A, Mev 13.0 16.9 17.2 15.8 17.0{20.6
( 1Y
r?) 2.9 2.40 2.38 2.85 2.72[2.52 |2.6740.03
2, Loy (12t 0.79) (2, 1.0 (1/2%,0.83)| (+) [(U2*y| 4315
-56.7  |-43.9 -54.9  [-43.6 -37 [-64.1
(302°,1.0) | 3127, 0.80) | (32", 1.0V | 3/27,0.82) | () |(32)[2L.8
(m, Py) -30.0 |-2L.3 -28.3  |-20.9 -21 {-26.5
:,‘Aé\', (1727, 1.0) [{1/27,0.80) | (1727, 1.0V | (1/27,0.82} { ¢} [(1/27)|21. 8
: 30,0 [-21.3 2283 |-20.9 -21 |-21.1
(U2, 1.0 | (127, 0.80 | (V27 1.0y} (1127, 0.8 | ¢-) [(1/27)|15.7
-23.5  |-17.0 2.6 |-16.8 21 [-en1|
C, Mev 50.46 . |48.64 262 |40.64
" TABLE4
-E/IA, A, R, Ra by 8
Mev | Mev | FM | mm
RBHF | 7.4 | 7.5 |2.61 | 2.90 [ 10.6 | 3.4
Lc 7.4 | 9.9 |26 |--—|1.7]--
RBHF | LC | ZR
112%,00 | (2*) | (+)
-48.02 ‘| -66.8 | -38
w2,n | Wy e
(T, py | 2865 | -381 | -27
ey B127,0 | 3127 | )
MeV -22.93 | -21.7 | -21
w20 | W) | -
-20.41 | -23.9 | -21
w20 | weh |+
-15.23 | -16.0 | -14
R | (aghs | (@) | BERO*-2Y, | BER 24N, | BEZA™-6M,
5 7 e 2. e 4
M FM FM2 e . FM e . M e? . Fm
RBHF | 2.72 ;113 | -14.5 152.7 7.3 66.9
Lc 2.80 -1 | -3 208.0 82.0 92.1
EXPT |2.8040.05 | -27411 | -—--- 285440 128413 95211
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