636 research outputs found

    The Optical Counterpart to the Accreting Millisecond X-ray Pulsar SAX J1748.9-2021 in the Globular Cluster NGC 6440

    Get PDF
    We used a combination of deep optical and Halpha images of the Galactic globular cluster NGC 6440, acquired with the Hubble Space Telescope, to identify the optical counterpart to the accreting millisecond X-ray pulsar SAX J1748.9-2021during quiescence. A strong Halpha emission has been detected from a main sequence star (hereafter COM-SAX J1748.9-2021) located at only 0.15" from the nominal position of the X-ray source. The position of the star also agrees with the optical counterpart found by Verbunt et al. (2000) during an outburst. We propose this star as the most likely optical counterpart to the binary system. By direct comparison with isochrones, we estimated that COM-SAX J1748.9-2021 has a mass of 0.70 Msun - 0.83 Msun, a radius of 0.88 pm 0.02 Rsun and a superficial temperature of 5250pm80 K. These parameters combined with the orbital characteristics of the binary suggest that the system is observed at a very low inclination angle (~8 deg -14 deg) and that the star is filling or even overflowing its Roche Lobe. This, together with the equivalent width of the Halpha emission (~20 Ang), suggest possible on-going mass transfer. The possibile presence of such a on-going mass transfer during a quiescence state also suggests that the radio pulsar is not active yet and thus this system, despite its similarity with the class of redback millisecond pulsars, is not a transitional millisecond pulsar.Comment: 8 pages, 6 figures. Accepted for publication in Ap

    Very hard states in neutron star low-mass X-ray binaries

    Get PDF
    We report on unusually very hard spectral states in three confirmed neutron-star low-mass X-ray binaries (1RXS J180408.9-342058, EXO 1745-248, and IGR J18245-2452) at a luminosity between ~ 10^{36-37} erg s^{-1}. When fitting the Swift X-ray spectra (0.5 - 10 keV) in those states with an absorbed power-law model, we found photon indices of \Gamma ~ 1, significantly lower than the \Gamma = 1.5 - 2.0 typically seen when such systems are in their so called hard state. For individual sources very hard spectra were already previously identified but here we show for the first time that likely our sources were in a distinct spectral state (i.e., different from the hard state) when they exhibited such very hard spectra. It is unclear how such very hard spectra can be formed; if the emission mechanism is similar to that operating in their hard states (i.e., up-scattering of soft photons due to hot electrons) then the electrons should have higher temperatures or a higher optical depth in the very hard state compared to those observed in the hard state. By using our obtained \Gamma as a tracer for the spectral evolution with luminosity, we have compared our results with those obtained by Wijnands et al. (2015). We confirm their general results in that also our sample of sources follow the same track as the other neutron star systems, although we do not find that the accreting millisecond pulsars are systematically harder than the non-pulsating systems.Comment: Accepted for publication in MNRA

    Discovery of coherent millisecond X-ray pulsations in Aql X-1

    Full text link
    We report the discovery of an episode of coherent millisecond X-ray pulsation in the neutron star low-mass X-ray binary Aql X-1. The episode lasts for slightly more than 150 seconds, during which the pulse frequency is consistent with being constant. No X-ray burst or other evidence of thermonuclear burning activity is seen in correspondence with the pulsation, which can thus be identified as occurring in the persistent emission. The pulsation frequency is 550.27 Hz, very close (0.5 Hz higher) to the maximum reported frequency from burst oscillations in this source. Hence we identify this frequency with the neutron star spin frequency. The pulsed fraction is strongly energy dependent, ranging from 10% (16-30 keV). We discuss possible physical interpretations and their consequences for our understanding of the lack of pulsation in most neutron star low-mass X-ray binaries. If interpreted as accretion-powered pulsation, Aql X-1 might play a key role in understanding the differences between pulsating and non-pulsating sources.Comment: 5 pages, 3 figures, accepted by ApJ Letters after minor revisions. Slightly extended discussion. One author added. Uses emulateapj.cl

    Type I X-ray bursts, burst oscillations and kHz quasi-periodic oscillations in the neutron star system IGR J17191-2821

    Full text link
    We present a detailed study of the X-ray energy and power spectral properties of the neutron star transient IGR J17191-2821. We discovered four instances of pairs of simultaneous kilohertz quasi-periodic oscillations (kHz QPOs). The frequency difference between these kHz QPOs is between 315 Hz and 362 Hz. We also report on the detection of five thermonuclear type-I X-ray bursts and the discovery of burst oscillations at ~294 Hz during three of them. Finally, we report on a faint and short outburst precursor, which occurred about two months before the main outburst. Our results on the broadband spectral and variability properties allow us to firmly establish the atoll source nature of IGR J17191-2821.Comment: 9 pages, 7 figures - accepted for publication in MNRA

    The Radiative Efficiency of a Radiatively Inefficient Accretion Flow

    Get PDF
    A recent joint XMM-Newton/Nuclear Spectroscopic Telescope Array (NuSTAR) observation of the accreting neutron star Cen X-4 (LX1033 erg s1L_{\rm X}\sim10^{33}{\rm~erg~s}^{-1}) revealed a hard power-law component (Γ1\Gamma\sim1-1.51.5) with a relatively low cut-off energy (~10 keV), suggesting bremsstrahlung emission. The physical requirements for bremsstrahlung combined with other observed properties of Cen X-4 suggest the emission comes from a boundary layer rather than the accretion flow. The accretion flow itself is thus undetected (with an upper limit of Lflow0.3LXL_{\rm flow}\lesssim0.3 L_{\rm X}). A deep search for coherent pulsations (which would indicate a strong magnetic field) places a 6 per cent upper limit on the fractional amplitude of pulsations, suggesting the flow is not magnetically regulated. Considering the expected energy balance between the accretion flow and the boundary layer for different values of the neutron star parameters (size, magnetic field, and spin) we use the upper limit on LflowL_{\rm flow} to set an upper limit of ε0.3\varepsilon\lesssim0.3 for the intrinsic radiative efficiency of the accretion flow for the most likely model of a fast-spinning, non-magnetic neutron star. The non-detection of the accretion flow provides the first direct evidence that this flow is indeed 'radiatively inefficient', i.e. most of the gravitational potential energy lost by the flow before it hits the star is not emitted as radiation.Comment: 15 pages, 3 figures - minor modifications to match published versio

    Secular spin-down of the AMP XTE J1751-305

    Get PDF
    Context. Of the 13 known accreting millisecond pulsars, only a few showed more than one outburst during the RXTE era. XTE J1751-305 showed, after the main outburst in 2002, other three dim outbursts. We report on the timing analysis of the latest one, occurred on October 8, 2009 and serendipitously observed from its very beginning by RXTE. Aims. The detection of the pulsation during more than one outburst permits to obtain a better constraint of the orbital parameters and their evolution as well as to track the secular spin frequency evolution of the source. Methods. Using the RXTE data of the last outburst of the AMP XTE J1751-305, we performed a timing analysis to improve the orbital parameters. Because of the low statistics, we used an epoch folding search technique on the whole data set to improve the local estimate of the time of ascending node passage. Results. Using this new orbital solution we epoch folded data obtaining three pulse phase delays on a time span of 1.2 days, that we fitted using a constant spin frequency model. Comparing this barycentric spin frequency with that of the 2002 outburst, we obtained a secular spin frequency derivative of -0.55(12) x 10^{-14} Hz s^{-1}. In the hypothesis that the secular spin-down is due to a rotating magneto-dipole emission, consistently with what is assumed for radio pulsars, we estimate the pulsar's magnetic dipole value. We derive an estimate of the magnetic field strength at the polar cap of B_{PC} = 4.0(4) x 10^8 Gauss, for a neutron star mass of 1.4M\odot, assuming the Friedman Pandharipande Skyrme equation of state.Comment: 7 pages, 4 figures, accepted for publication on A&

    Spectral evidence for jets from Accreting Millisecond X-ray Pulsars

    Get PDF
    Transient radio emission from X-ray binaries is associated with synchrotron emission from collimated jets that escape the system, and accreting millisecond X-ray pulsars (AMXPs) are no exception. Although jets from black hole X-ray binaries are well-studied, those from neutron star systems appear much fainter, for reasons yet uncertain. Jets are usually undetectable at higher frequencies because of the relative brightness of other components such as the accretion disc. AMXPs generally have small orbital separations compared with other X-ray binaries and as such their discs are relatively faint. Here, I present data that imply jets in fact dominate the radio-to-optical spectrum of outbursting AMXPs. They therefore may provide the best opportunity to study the behaviour of jets produced by accreting neutron stars, and compare them to those produced by black hole systems.Comment: 4 pages, 2 figures, to appear in the proceedings of "A Decade of Accreting Millisecond X-ray Pulsars", Amsterdam, April 2008, eds. R. Wijnands et al. (AIP Conf. Proc.

    The pulse profile and spin evolution of the accreting pulsar in Terzan 5, IGR J17480-2446, during its 2010 outburst

    Get PDF
    (abridged) We analyse the spectral and pulse properties of the 11 Hz transient accreting pulsar, IGR J17480-2446, in the globular cluster Terzan 5, considering all the available RXTE, Swift and INTEGRAL observations performed between October and November, 2010. By measuring the pulse phase evolution we conclude that the NS spun up at an average rate of =1.48(2)E-12 Hz/s, compatible with the accretion of the Keplerian angular momentum of matter at the inner disc boundary. Similar to other accreting pulsars, the stability of the pulse phases determined by using the second harmonic component is higher than that of the phases based on the fundamental frequency. Under the assumption that the second harmonic is a good tracer of the neutron star spin frequency, we successfully model its evolution in terms of a luminosity dependent accretion torque. If the NS accretes the specific Keplerian angular momentum of the in-flowing matter, we estimate the inner disc radius to lie between 47 and 93 km when the luminosity attains its peak value. Smaller values are obtained if the interaction between the magnetic field lines and the plasma in the disc is considered. The phase-averaged spectrum is described by thermal Comptonization of photons with energy of ~1 keV. A hard to soft state transition is observed during the outburst rise. The Comptonized spectrum evolves from a Comptonizing cloud at an electron temperature of ~20 keV towards an optically denser cloud at kT_e~3 keV. At the same time, the pulse amplitude decreases from 27% to few per cent and becomes strongly energy dependent. We discuss various possibilities to explain such a behaviour, proposing that at large accretion luminosities a significant fraction of the in-falling matter is not channelled towards the magnetic poles, but rather accretes more evenly onto the NS surface.Comment: To appear in MNRA

    Binary evolution with LOFT

    Full text link
    This is a White Paper in support of the mission concept of the Large Observatory for X-ray Timing (LOFT), proposed as a medium-sized ESA mission. We discuss the potential of LOFT for the study of very faint X-ray binaries, orbital period distribution of black hole X-ray binaries and neutron star spin up. For a summary, we refer to the paper.Comment: White Paper in Support of the Mission Concept of the Large Observatory for X-ray Timing. (v2 few typos corrected
    corecore