1,912 research outputs found

    Hemispheric specialization in selective attention and short-term memory: a fine-coarse model of left- and right-ear disadvantages.

    Get PDF
    Serial short-term memory is impaired by irrelevant sound, particularly when the sound changes acoustically. This acoustic effect is larger when the sound is presented to the left compared to the right ear (a left-ear disadvantage). Serial memory appears relatively insensitive to distraction from the semantic properties of a background sound. In contrast, short-term free recall of semantic-category exemplars is impaired by the semantic properties of background speech and is relatively insensitive to the sound’s acoustic properties. This semantic effect is larger when the sound is presented to the right compared to the left ear (a right-ear disadvantage). In this paper, we outline a speculative neurocognitive fine-coarse model of these hemispheric differences in relation to short-term memory and selective attention, and explicate empirical directions in which this model can be critically evaluated

    Journal Staff

    Get PDF
    BACKGROUND: It has been hypothesised that an upregulation of the neuropeptide substance P (SP) and its preferred receptor, the neurokinin-1 receptor (NK-1 R), is a causative factor in inducing tenocyte hypercellularity, a characteristic of tendinosis, through both proliferative and antiapoptotic stimuli. We have demonstrated earlier that SP stimulates proliferation of human tenocytes in culture. AIM: The aim of this study was to investigate whether SP can mediate an antiapoptotic effect in tumour necrosis factor-α (TNF-α)-induced apoptosis of human tenocytes in vitro. RESULTS: A majority (approximately 75%) of tenocytes in culture were immunopositive for TNF Receptor-1 and TNF Receptor-2. Exposure of the cells to TNF-α significantly decreased cell viability, as shown with crystal violet staining. TNF-α furthermore significantly increased the amount of caspase-10 and caspase-3 mRNA, as well as both BID and cleaved-poly ADP ribosome polymerase (c-PARP) protein. Incubation of SP together with TNF-α resulted in a decreased amount of BID and c-PARP, and in a reduced lactate dehydrogenase release, as compared to incubation with TNF-α alone. The SP effect was blocked with a NK-1 R inhibitor. DISCUSSION: This study shows that SP, through stimulation of the NK-1 R, has the ability to reduce TNF-α-induced apoptosis of human tenocytes. Considering that SP has previously been shown to stimulate tenocyte proliferation, the study confirms SP as a potent regulator of cell-turnover in tendon tissue, capable of stimulating hypercellularity through different mechanisms. This gives further support for the theory that the upregulated amount of SP seen in tendinosis could contribute to hypercellularity

    Hidden parameters in open-system evolution unveiled by geometric phase

    Full text link
    We find a class of open-system models in which individual quantum trajectories may depend on parameters that are undetermined by the full open-system evolution. This dependence is imprinted in the geometric phase associated with such trajectories and persists after averaging. Our findings indicate a potential source of ambiguity in the quantum trajectory approach to open quantum systems.Comment: QSD analysis added; several stylistic changes; journal reference adde

    Tunable quantum spin Hall effect in double quantum wells

    Full text link
    The field of topological insulators (TIs) is rapidly growing. Concerning possible applications, the search for materials with an easily controllable TI phase is a key issue. The quantum spin Hall effect, characterized by a single pair of helical edge modes protected by time-reversal symmetry, has been demonstrated in HgTe-based quantum wells (QWs) with an inverted bandgap. We analyze the topological properties of a generically coupled HgTe-based double QW (DQW) and show how in such a system a TI phase can be driven by an inter-layer bias voltage, even when the individual layers are non-inverted. We argue, that this system allows for similar (layer-)pseudospin based physics as in bilayer graphene but with the crucial absence of a valley degeneracy.Comment: 9 pages, 8 figures, extended version (accepted Phys. Rev. B

    Dynamical Coulomb blockade and spin-entangled electrons

    Full text link
    We consider the production of mobile and nonlocal pairwise spin-entangled electrons from tunneling of a BCS-superconductor (SC) to two normal Fermi liquid leads. The necessary mechanism to separate the two electrons coming from the same Cooper pair (spin-singlet) is achieved by coupling the SC to leads with a finite resistance. The resulting dynamical Coulomb blockade effect, which we describe phenomenologically in terms of an electromagnetic environment, is shown to be enhanced for tunneling of two spin-entangled electrons into the same lead compared to the process where the pair splits and each electron tunnels into a different lead. On the other hand in the pair-split process, the spatial correlation of a Cooper pair leads to a current suppression as a function of distance between the two tunnel junctions which is weaker for effectively lower dimensional SCs.Comment: 5 pages, 2 figure

    Optimization of production of the anti-keratin 8 single-chain Fv TS1-218 in Pichia pastoris using design of experiments

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Optimization of conditions during recombinant protein production for improved yield is a major goal for protein scientists. Typically this is achieved by changing single crucial factor settings one at a time while other factors are kept fixed through trial-and-error experimentation. This approach may introduce larger bias and fail to identify interactions between the factors resulting in failure of finding the true optimal conditions.</p> <p>Results</p> <p>In this study we have utilized design of experiments in order to identify optimal culture conditions with the aim to improve the final yield of the anti-keratin 8 scFv TS1-218, during expression in <it>P. pastoris </it>in shake flasks. The effect of: pH, temperature and methanol concentration on the yield of TS1-218 using buffered minimal medium was investigated and a predictive model established. The results demonstrated that higher starting pH and lower temperatures during induction significantly increased the yield of TS1-218. Furthermore, the result demonstrated increased biomass accumulation and cell viability at lower temperatures which suggested that the higher yield of TS1-218 could be attributed to lower protease activity in the culture medium. The optimal conditions (pH 7.1, temperature 11°C and methanol concentration 1.2%) suggested by the predictive model yielded 21.4 mg TS1-218 which is a 21-fold improvement compared to the yield prior to optimization.</p> <p>Conclusion</p> <p>The results demonstrated that design of experiments can be utilized for a rapid optimization of initial culture conditions and that <it>P. pastoris </it>is highly capable of producing and secreting functional single-chain antibody fragments at temperatures as low as 11°C.</p

    Dynamic cognitive control of irrelevant sound:Increased task engagement attenuates semantic auditory distraction

    Get PDF
    Two experiments investigated reactive top-down cognitive control of the detrimental influence of spoken distractors semantically related to visually-presented words presented for free recall. Experiment 1 demonstrated that an increase in focal task-engagement—promoted experimentally by reducing the perceptual discriminability of the visual target-words—eliminated the disruption by such distracters of veridical recall and also attenuated the erroneous recall of the distracters. A recall instruction that eliminates the requirement for output-monitoring was used in Experiment 2 to investigate whether increased task-engagement shields against distraction through a change in output-monitoring processes (back-end control) or by affecting the processing of the distracters during their presentation (front-end control). Rates of erroneous distracter-recall were much greater than in Experiment 1 but both erroneous distracter-recall and the disruptive effect of distracters on veridical recall were still attenuated under reduced target-word discriminability. Taken together, the results show that task-engagement is under dynamic strategic control and can be modulated to shield against auditory distraction by attenuating distracter-processing at encoding thereby preventing distracters from coming to mind at test
    corecore