180 research outputs found

    Vertex corrections in localized and extended systems

    Get PDF
    Within many-body perturbation theory we apply vertex corrections to various closed-shell atoms and to jellium, using a local approximation for the vertex consistent with starting the many-body perturbation theory from a DFT-LDA Green's function. The vertex appears in two places -- in the screened Coulomb interaction, W, and in the self-energy, \Sigma -- and we obtain a systematic discrimination of these two effects by turning the vertex in \Sigma on and off. We also make comparisons to standard GW results within the usual random-phase approximation (RPA), which omits the vertex from both. When a vertex is included for closed-shell atoms, both ground-state and excited-state properties demonstrate only limited improvements over standard GW. For jellium we observe marked improvement in the quasiparticle band width when the vertex is included only in W, whereas turning on the vertex in \Sigma leads to an unphysical quasiparticle dispersion and work function. A simple analysis suggests why implementation of the vertex only in W is a valid way to improve quasiparticle energy calculations, while the vertex in \Sigma is unphysical, and points the way to development of improved vertices for ab initio electronic structure calculations.Comment: 8 Pages, 6 Figures. Updated with quasiparticle neon results, extended conclusions and references section. Minor changes: Updated references, minor improvement

    Image states in metal clusters

    Get PDF
    The existence of image states in small clusters is shown, using a quantum-mechanical many-body approach. We present image state energies and wave functions for spherical jellium clusters up to 186 atoms, calculated in the GW approximation, where G is the Green's function and W is the dynamically screened Coulomb interaction, which by construction contains the dynamic long-range correlation effects that give rise to image effects. In addition, we find that image states are also subject to quantum confinement. To extrapolate our investigations to clusters in the mesoscopic size range, we propose a semiclassical model potential, which we test against our full GW results

    P2Y12 regulates platelet adhesion/activation, thrombus growth, and thrombus stability in injured arteries

    Get PDF
    The critical role for ADP in arterial thrombogenesis was established by the clinical success of P2Y12 antagonists, currently used at doses that block 40–50% of the P2Y12 on platelets. This study was designed to determine the role of P2Y12 in platelet thrombosis and how its complete absence affects the thrombotic process. P2Y12-null mice were generated by a gene-targeting strategy. Using an in vivo mesenteric artery injury model and real-time continuous analysis of the thrombotic process, we observed that the time for appearance of first thrombus was delayed and that only small, unstable thrombi formed in P2Y12–/– mice without reaching occlusive size, in the absence of aspirin. Platelet adhesion to vWF was impaired in P2Y12–/– platelets. While adhesion to fibrinogen and collagen appeared normal, the platelets in thrombi from P2Y12–/– mice on collagen were less dense and less activated than their WT counterparts. P2Y12–/– platelet activation was also reduced in response to ADP or a PAR-4–activating peptide. Thus, P2Y12 is involved in several key steps of thrombosis: platelet adhesion/activation, thrombus growth, and stability. The data suggest that more aggressive strategies of P2Y12 antagonism will be antithrombotic without the requirement of aspirin cotherapy and may provide benefits even to the aspirin-nonresponder population

    Effect of MWCNTs on Gastric Emptying in Mice

    Get PDF
    After making model of gastric functional disorder (FD), part of model mice were injected intravenously (i.v.) with oxide multi-walled carbon nanotubes (oMWCNTs) to investigate effect of carbon nanotubes on gastric emptying. The results showed that NO content in stomach, compared with model group, was decreased significantly and close to normal level post-injection with oMWCNTs (500 and 800 μg/mouse). In contrast to FD or normal groups, the content of acetylcholine (Ach) in stomach was increased obviously in injection group with 500 or 800 μg/mouse of oMWCNTs. The kinetic curve of emptying was fitted to calculate gastric motility factor k; the results showed that the k of injection group was much higher than FD and normal. In other words, the gastric motility of FD mice was enhanced via injection with oMWCNTs. In certain dosage, oMWCNTs could improve gastric emptying and motility

    COMAP Early Science: VIII. A Joint Stacking Analysis with eBOSS Quasars

    Full text link
    We present a new upper limit on the cosmic molecular gas density at z=2.43.4z=2.4-3.4 obtained using the first year of observations from the CO Mapping Array Project (COMAP). COMAP data cubes are stacked on the 3D positions of 282 quasars selected from the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) catalog, yielding a 95% upper limit for flux from CO(1-0) line emission of 0.210 Jy km/s. Depending on the assumptions made, this value can be interpreted as either an average CO line luminosity LCOL'_\mathrm{CO} of eBOSS quasars of 7.30×1010\leq 7.30\times10^{10} K km pc2^2 s1^{-1}, or an average molecular gas density ρH2\rho_\mathrm{H_2} in regions of the universe containing a quasar of 2.02×108\leq 2.02\times10^8 M_\odot cMpc3^{-3}. The LCOL'_\mathrm{CO} upper limit falls among CO line luminosities obtained from individually-targeted quasars in the COMAP redshift range, and the ρH2\rho_\mathrm{H_2} value is comparable to upper limits obtained from other Line Intensity Mapping (LIM) surveys and their joint analyses. Further, we forecast the values obtainable with the COMAP/eBOSS stack after the full 5-year COMAP Pathfinder survey. We predict that a detection is probable with this method, depending on the CO properties of the quasar sample. Based on these achieved sensitivities, we believe that this technique of stacking LIM data on the positions of traditional galaxy or quasar catalogs is extremely promising, both as a technique for investigating large galaxy catalogs efficiently at high redshift and as a technique for bolstering the sensitivity of LIM experiments, even with a fraction of their total expected survey data.Comment: 15 pages, 8 figures. To be submitted to Ap

    COMAP Early Science: VIII. A Joint Stacking Analysis with eBOSS Quasars

    Get PDF
    We present a new upper limit on the cosmic molecular gas density at z = 2.4 − 3.4 obtained using the first year of observations from the CO Mapping Array Project (COMAP). COMAP data cubes are stacked on the 3D positions of 243 quasars selected from the Extended Baryon Oscillation SpectroscopicSurvey (eBOSS) catalog, yielding a 95% upper limit for flux from CO(1-0) line emission of 0.129 Jykm/s. Depending on the balance of the emission between the quasar host and its environment, this value can be interpreted as an average CO line luminosity L′CO of eBOSS quasars of ≤ 1.26 × 1011 K km pc2s−1, or an average molecular gas density ρH2 in regions of the universe containing a quasar of ≤ 1.52 × 108 M⊙ cMpc−3. The L′ CO upper limit falls among CO line luminosities obtained fromindividually-targeted quasars in the COMAP redshift range, and the ρH2 value is comparable to upper limits obtained from other Line Intensity Mapping (LIM) surveys and their joint analyses. Further, we forecast the values obtainable with the COMAP/eBOSS stack after the full 5-year COMAP Pathfinder survey. We predict that a detection is probable with this method, depending on the CO properties of the quasar sample. Based on the achieved sensitivity, we believe that this technique of stacking LIM data on the positions of traditional galaxy or quasar catalogs is extremely promising, both asa technique for investigating large galaxy catalogs efficiently at high redshift and as a technique for bolstering the sensitivity of LIM experiments, even with a fraction of their total expected survey data

    COMAP Early Science: VII. Prospects for CO Intensity Mapping at Reionization

    Full text link
    We introduce COMAP-EoR, the next generation of the Carbon Monoxide Mapping Array Project aimed at extending CO intensity mapping to the Epoch of Reionization. COMAP-EoR supplements the existing 30 GHz COMAP Pathfinder with two additional 30 GHz instruments and a new 16 GHz receiver. This combination of frequencies will be able to simultaneously map CO(1--0) and CO(2--1) at reionization redshifts (z58z\sim5-8) in addition to providing a significant boost to the z3z\sim3 sensitivity of the Pathfinder. We examine a set of existing models of the EoR CO signal, and find power spectra spanning several orders of magnitude, highlighting our extreme ignorance about this period of cosmic history and the value of the COMAP-EoR measurement. We carry out the most detailed forecast to date of an intensity mapping cross-correlation, and find that five out of the six models we consider yield signal to noise ratios (S/N) 20\gtrsim20 for COMAP-EoR, with the brightest reaching a S/N above 400. We show that, for these models, COMAP-EoR can make a detailed measurement of the cosmic molecular gas history from z28z\sim2-8, as well as probe the population of faint, star-forming galaxies predicted by these models to be undetectable by traditional surveys. We show that, for the single model that does not predict numerous faint emitters, a COMAP-EoR-type measurement is required to rule out their existence. We briefly explore prospects for a third-generation Expanded Reionization Array (COMAP-ERA) capable of detecting the faintest models and characterizing the brightest signals in extreme detail.Comment: Paper 7 of 7 in series. 19 pages, 10 figures, to be submitted to Ap

    COMAP Early Science: VI. A First Look at the COMAP Galactic Plane Survey

    Full text link
    We present early results from the COMAP Galactic Plane Survey conducted between June 2019 and April 2021, spanning 20<<4020^\circ<\ell<40^\circ in Galactic longitude and |b|<1.\!\!^{\circ}5 in Galactic latitude with an angular resolution of 4.54.5^{\prime}. The full survey will span 20\ell \sim 20^{\circ}- 220220^{\circ} and will be the first large-scale radio continuum survey at 3030 GHz with sub-degree resolution. We present initial results from the first part of the survey, including diffuse emission and spectral energy distributions (SEDs) of HII regions and supernova remnants. Using low and high frequency surveys to constrain free-free and thermal dust emission contributions, we find evidence of excess flux density at 3030\,GHz in six regions that we interpret as anomalous microwave emission. Furthermore we model UCHII contributions using data from the 55\,GHz CORNISH catalogue and reject this as the cause of the 3030\,GHz excess. Six known supernova remnants (SNR) are detected at 3030\,GHz, and we measure spectral indices consistent with the literature or show evidence of steepening. The flux density of the SNR W44 at 3030\,GHz is consistent with a power-law extrapolation from lower frequencies with no indication of spectral steepening in contrast with recent results from the Sardinia Radio Telescope. We also extract five hydrogen radio recombination lines to map the warm ionized gas, which can be used to estimate electron temperatures or to constrain continuum free-free emission. The full COMAP Galactic plane survey, to be released in 2023/2024, will be an invaluable resource for Galactic astrophysics.Comment: Paper 6 of 7 in series. 28 pages, 10 figures, submitted to Ap

    COMAP Early Science: IV. Power Spectrum Methodology and Results

    Full text link
    We present the power spectrum methodology used for the first-season COMAP analysis, and assess the quality of the current data set. The main results are derived through the Feed-feed Pseudo-Cross-Spectrum (FPXS) method, which is a robust estimator with respect to both noise modeling errors and experimental systematics. We use effective transfer functions to take into account the effects of instrumental beam smoothing and various filter operations applied during the low-level data processing. The power spectra estimated in this way have allowed us to identify a systematic error associated with one of our two scanning strategies, believed to be due to residual ground or atmospheric contamination. We omit these data from our analysis and no longer use this scanning technique for observations. We present the power spectra from our first season of observing and demonstrate that the uncertainties are integrating as expected for uncorrelated noise, with any residual systematics suppressed to a level below the noise. Using the FPXS method, and combining data on scales k=0.0510.62Mpc1k=0.051-0.62 \,\mathrm{Mpc}^{-1} we estimate PCO(k)=2.7±1.7×104μK2Mpc3P_\mathrm{CO}(k) = -2.7 \pm 1.7 \times 10^4\mu\textrm{K}^2\mathrm{Mpc}^3, the first direct 3D constraint on the clustering component of the CO(1-0) power spectrum in the literature.Comment: Paper 4 of 7 in series. 18 pages, 11 figures, as accepted in Ap
    corecore