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Image states in metal clusters
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The existence of image states in small clusters is shown, using a quantum-mechanical many-body
approach. We present image state energies and wave functions for spherical jellium clusters up
to 186 atoms, calculated in the GW approximation, where G is the Green’s function, and W the
dynamically screened Coulomb interaction, which by construction contains the dynamic long-range
correlation effects that give rise to image effects. In addition we find that image states are also
subject to quantum confinement. To extrapolate our investigations to clusters in the mesoscopic
size range, we propose a semiclassical model potential, which we test against our full GW results.

PACS numbers: 36.40.Cg, 73.20.At, 73.22.Dj

I. INTRODUCTION

Image states are highly extended, excited electronic
states that occur predominantly at the surface of a po-
larizable material when an extra electron is added to the
system. Electrons in such an image state feel the attrac-
tive force of the charge induced in the material even far
away from the surface due to the extremely long-ranged
correlation of the Coulomb potential.

In the past, research on image states was mostly de-
voted to metal surfaces, both experimentally [1] and the-
oretically [2]. Recently, however, studies have also been
extended to nanotubes [3] and metallic nanowires on sur-
faces [4]. Unlike surfaces, isolated nanoclusters are not
stationary and image states can therefore only be re-
solved indirectly with the experimental techniques cur-
rently available. By measuring the capture cross section
of low-energy electrons, for instance, Kasperovich et al.
were able to identify a clear signature of image effects in
free sodium clusters of 4 nm radius [5].

In the context of water clusters, polar molecules, and
clusters of rare gas atoms, excess electron states have
been widely discussed in the literature [6]. The electron-
electron interaction in these clusters is typically included
using quasiclassical dielectric screening, which becomes
justified in the mesoscopic regime but is not parameter-
free [7, 8, 9]. For smaller clusters, the interaction of the
excess electron with the cluster has been modeled using
electron-atom pseudopotentials, with the ground state
geometry from molecular dynamics [10]; image states
were not included in the study.
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While the effect of the cluster polarization potential
on the scattering [11] and capture [12] cross section has
been studied with a variety of different approaches, we
will focus in this paper specifically on the bound states
that arise from the interaction of the excess electron with
its image charges. We report first-principles calculations
for jellium clusters with sodium densities as a prototype
system for isolated nanoclusters. The Coulomb interac-
tion between all valence electrons is taken into account in
the framework of many-body perturbation theory. The
image state energies and wave functions were obtained
using the GW approximation [13], which has proven to
be very successful for the description of image effects
[2, 14, 15] and other quasiparticle properties [16]. Our
calculations predict the existence of image states in these
zero-dimensional nanostructures even down to relatively
small cluster sizes.

By way of illustration, the classical image potential
outside a neutral solid sphere with radius R. and dielec-
tric constant e has the form [17]
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for » > R.. The last expression illustrates the limit of a
perfectly conducting sphere (¢ — 00); the familar image
potential of a flat surface, —1/4z where z = r — R, is
recovered for large cluster radii.

The image potential for a solid sphere (1) decays
asymptotically as —1/7* and thus much more rapidly
than the image potential of the planar surface. However,
in a region of size of order R, just outside the surface,
the much more accommodating flat-surface form prevails
(Fig. 1).

As previously reported [3] the image potential of a
metallic tube with radius R; decays asymptotically as
—1/[rR¢In(r/R:)] and is thus effectively situated closer
to the flat-surface limit in Fig. 1. For both the cluster
and the tube, the image potential depends on the radius
of the nanostructure. For clusters, this dependence is
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FIG. 1:  The classical image potential,
vim(r) [Eq. 1], of a solid sphere with ¢ =
1000 becomes more accommodating with
increasing radius R. (in a.u.) and is bound
by the planar surface (solid line to the right)
and the atomic limit (solid line to the left).
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considerable, as Fig. 1 illustrates, and consequently has
a strong effect on the binding energy and the wave func-
tions of the image states, as we will show in the following.

II. COMPUTATIONAL APPROACH

The quasiparticle energies and wave functions are for-
mally the solution of the quasiparticle equation

Ho vn(x) + / 'S e )on(t) = enthnd)  (2)

with the effective one-particle Hamiltonian, ﬁo, includ-
ing the Hartree and the external potential. The non-
local, dynamical self-energy X (r,r’;w) contains the elec-
tron exchange and correlation effects beyond the Hartree
mean-field and is, in the GW approximation, given by
¥ = GW [13], where G is the Green’s function, and W
the dynamically screened Coulomb interaction.

In the jellium clusters studied in this paper, the atomic
nuclei are replaced by a homogeneous, positive back-
ground charge, p™(r) = pg@(R. — r), with pg = 3/4nrs.
The Wigner-Seitz radius r, is indicative of the electron
density of the material and we chose a value of r;=4.0
for the jellium clusters with sodium densities presented
here.

The electrostatic potential created by the background
charge density, p*(r), is spherically symmetric and,
therefore, all cross section planes through the origin
of the cluster are equivalent. It is thus sufficient to
describe the system by two radial coordinates r and
r’ and one angular coordinate # that denotes the an-
gle between the vectors r and r’. The self-energy
then assumes the much simpler form X(r,7’,0;w) =
S (B (r0”) + T (1,173 )] Pi(cos ).

The Legendre expansion coefficients of the exchange,
37, and the correlation part, 37, of the self-energy are
calculated directly, thereby surpassing the need for an
explicit treatment of the angular dependence. We use
a real-space and imaginary time representation [18] to
calculate the self-energy from the Kohn-Sham Green’s
function of a preceding density-functional calculation in
the local density approximation (LDA). The expression
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for the self-energy on the real frequency axis is obtained
by means of analytic continuation [18].

To obtain the quasiparticle energies and wave func-
tions, the quasiparticle equation (2) is fully diagonalized
in the basis of the LDA wave functions. The ionization
potential and the electron affinities calculated in this way
agree well with available data from photoionization ex-
periments [19] and are also in excellent agreement with
the only previous GW study on spherical jellium clus-
ters by Saito et al [20], in which a plasmon pole model
was used. The energy range in which surface and image
states occur in jellium clusters, however, was not included
in their investigation.

III. IMAGE STATES IN METAL CLUSTERS

In Fig. 2 we present the highest image state [21] calcu-
lated for the clusters Najss and Najgg, respectively [22].
Both image states are very similar in character and ex-
tend extremely far into the vacuum having an almost
insignificant overlap with the cluster. Most strikingly,
however, is that the corresponding LDA states bear no
resemblance to the image state wave functions. Due to
the absence of long-range correlation effects in density-
functional theory (DFT) the corresponding state in the
LDA calculation becomes an unbound state that is scat-
tered by the effective potential. This observation proves
that a full diagonalization of the quasiparticle Hamilto-
nian (2) is necessary, because the LDA wave functions
no longer provide a good description of the quasiparti-
cle wave functions, as is the case for bulk [23] and low
lying cluster [20, 24] states. The exchange-correlation po-
tential in the LDA decays exponentially in the vacuum
region as opposed to the —1/r* behavior of the image po-
tential felt by an extra electron. The similarity between
these two potentials for small clusters is coincidental and
leads in certain cases to bound image states even in the
LDA (see Fig. 3).

Owing to the much more rapid decay of the image po-
tential for a solid sphere (1), the energy band in which
image states are found is reduced to ~0.2 eV below the
vacuum level for a small cluster compared to an energy
range of approximately 1 eV found at metal surfaces [2].
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FIG. 2: For each of the clusters Naiss and Najgs, a loosely
bound image state is found that predominantly resides in the
vacuum region outside the cluster and has very little overlap
with the cluster region. In the LDA, neither an image state
nor a bound state with the same quantum numbers can be
obtained. (The energies are referenced with respect to the
vacuum and the gray box marks the extent of the clusters.)

The image state binding energies of —0.025 eV for Najsg
and —0.037 eV for Najgg are thus small in relation to
energies of a few tenths of an eV observed for sodium
surfaces [2]. For larger clusters, the overlap of the higher
image states with the cluster region becomes negligible
(see Fig. 2). We therefore expect these states to be in-
sensitive to any atomic structure of the cluster, and to
be long lived.

Focusing on the highest image state in the sodium clus-
ter series, we now demonstrate that image states are sub-
ject to quantum confinement effects. In Fig. 3, we have
illustrated the evolution of the state (L=0,N=4) with in-
creasing cluster size. In the smallest cluster, Nagy, the
image state is most narrowly bound at only —0.036 eV,
whereas in the next larger cluster, Nayg, it is localized
closer to the surface and exhibits more overlap with the
cluster itself. The same state has evolved into a surface
resonance for the Nasg cluster and will eventually become
an ordinary bound cluster state for larger quantum dots.
This size dependence of the image states results from a
delicate interplay between the confinement of the cluster
potential and the long range of the image potential. If
there was no overlap of the image state wave function
with the cluster region, as assumed in many classical ap-
proaches, then the image states in the size range depicted
in Fig. 3 would be identical, since the variation of the im-
age potential itself can be regarded as negligible in this
range (see Fig. 1). In reality, however, the overlap with
the cluster increases with cluster size, as can be seen in
Fig. 3, which is accompanied by an increase in binding
energy. Subsequently, the electron in the image state will
sample less and less of the long-ranging image tail. A re-
duced confinement by the external cluster potential will
therefore lead to a stronger confinement by the image
potential and thus to a stronger localization overall.

Furthermore, Nag4 is the smallest cluster in the sodium
series for which at least one image state is bound. This
observation therefore positively answers the question that
arises from Eq. (1) and Fig. 1 if there exists a minimum
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FIG. 3: The highest image state (solid line) in Nag4 becomes
more tightly bound and more strongly localized with increas-
ing cluster size, Na4o, and eventually evolves into a surface
resonance in Nasg. For comparison, the LDA wave functions
have been included (dashed lines).

cluster size for image effects to become important.

Experimentally it has recently been demonstrated by
Kasperovich et al. [5] that the size of sodium nanoclus-
ters can be determined by measuring the contribution
to the capture cross section that arises from image ef-
fects. In this context we therefore like to emphasize that,
in contrast to surfaces, spherical nanostructures provide
an extra parameter to tailor the binding energy and the
shape of an images state.

IV. TOWARDS THE MESOSCOPIC SIZE
RANGE

In the final part of this paper we will pursue the no-
tion of incorporating image effects into a suitable model
potential in the framework of our DFT calculations, in
order to predict image states for clusters in the meso-
scopic size range. Our full GW results will thereby serve
as a reference to establish the validity of the model and
to give an estimate of its transferability.

Because the exchange-correlation potential in the LDA
Vgze(r) is proportional to a power of the electron density,
it will decay exponentially outside the cluster. The im-
age potential (1) on the other hand is long ranging since
it asymptotically follows an inverse power-law behavior
that varies between —1/r% for small clusters and —1/r
for larger ones. In the vicinity of the cluster surface,
the exponentially decaying v..(r) will thus be shallower
than the image potential, which then approaches zero
much more slowly after a crossover point with the LDA
potential (see Fig. 4).

In the spirit of image state calculations for surfaces
performed by Serena et al. and Chulkov et at. [25], who
apply model potentials to correct the erroneous decay of
the Kohn-Sham exchange-correlation potential, we have
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FIG. 4: The model potential of Eq. (3) of a Naiss cluster
with e = 1000 (solid line) crosses over with the exponentially
decaying LDA-v,. potential (dashed line) and follows the in-
verse power law decay of the classical image potential (Eq.
(1)) (dotted line) by construction.

constructed an effective potential

Vze(T) r <R.—d
Umod(,€) = ¢ P(r) R.—d< r <R.+d (3)
vi(re)  Re+d< r

for our jellium clusters, based on the classical image po-
tential of a solid sphere (1). The model potential is
designed to be local, so that it can be employed on
the level of our DFT-LDA calculations. The interpo-
lation function p(r) is a third-order polynomial which
joins smoothly and continuously onto v,. and v, at
r = R, £ d. For the value of d we impose the constraint
Vge(Re — d) < 08, (R + d) in order to avoid an unphys-
ical shape of the potential in the intermediate region.
Because the occupied wave functions and thus the den-
sity might be slightly altered by the modifications, we
determine the model potential self-consistently, applying
Eq. (3) at every iteration of the density.

In Fig. 4 we present the model potential obtained for
the Najsg cluster and a dielectric constant of ¢ = 1000.
Inside the cluster, the model potential follows the shape
of the LDA-v,. potential, but in the immediate vicin-
ity of the cluster surface it approaches zero much faster.
At a distance of approximately one-half the cluster ra-
dius away from the surface the model potential, which by
construction follows the inverse power-law decay of the
classical image potential, v& (r), crosses over with the
exponentially decaying exchange-correlation potential in
the LDA, as expected.

The inclusion of long-range correlation effects in this
fashion proves to be necessary to reproduce the same im-
age states as our full quasiparticle calculations, in partic-
ular in those cases where the LDA breaks down (see Fig.
2). The shape of the image state wave functions and the
energies dependend on the dielectric constant, while the
number of such states is insensitive to it.

To close the discussion on our model potential, we ap-
ply it to a cluster approaching the mesoscopic size range.
For this purpose we chose the cluster Nasgg, that has a
radius of 31.9 a.u.. Our model potential calculation yields
six image states, whereas only three of them have a corre-
sponding state in the LDA. The highest image state pre-
dicted by the model is very narrowly bound (—0.004 eV).
It extends extremely far into the vacuum and reaches its
intensity maximum as far as two cluster radii away from
the surface. This observation corroborates the conjec-
ture that the number of image states increases for larger
clusters until the familiar Rydberg series is recovered in
the limit of infinitely large clusters. It further suggests
that clusters with 2.5 times this radius, as those studied
experimentally by Kasperovich et al. [5] (see also line
for 86.2 a.u. in Fig. 1) will already bind a considerable
number of image states, which will then contribute no-
ticeably to the electron capture rate, as observed in the
experiment [5].

V. CONCLUSIONS

In conclusion, we have presented image states for small
clusters from a full quantum-mechanical many-body cal-
culation. In contrast to surfaces, nanoclusters contain
a finite number of image states, that are subject to
quantum confinement effects. In order to describe im-
age states in the GW approximation correctly, a full
diagonalization of the quasiparticle Hamiltonian is nec-
essary, because the LDA wave functions no longer pro-
vide a good description of the quasiparticle wave func-
tions. To extend the discussion to mesoscopic clusters,
we have devised a model potential that captures the cor-
rect asymptotic decay of the image potential and yields
images states in qualitative agreement with the quasipar-
ticle states of our GW approach.
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