236 research outputs found

    Testing Models of Intrinsic Brightness Variations in Type Ia Supernovae, and their Impact on Measuring Cosmological Parameters

    Full text link
    For spectroscopically confirmed Type Ia supernovae we evaluate models of intrinsic brightness variations with detailed data/Monte Carlo comparisons of the dispersion in the following quantities: Hubble-diagram scatter, color difference (B-V-c) between the true B-V color and the fitted color (c) from the SALT-II light curve model, and photometric redshift residual. The data sample includes 251 ugriz light curves from the 3-season Sloan Digital Sky Survey-II, and 191 griz light curves from the Supernova Legacy Survey 3-year data release. We find that the simplest model of a wavelength-independent (coherent) scatter is not adequate, and that to describe the data the intrinsic scatter model must have wavelength-dependent variations. We use Monte Carlo simulations to examine the standard approach of adding a coherent scatter term in quadrature to the distance-modulus uncertainty in order to bring the reduced chi2 to unity when fitting a Hubble diagram. If the light curve fits include model uncertainties with the correct wavelength dependence of the scatter, we find that the bias on the dark energy equation of state parameter ww is negligible. However, incorrect model uncertainties can lead to a significant bias on the distance moduli, with up to ~0.05 mag redshift-dependent variation. For the recent SNLS3 cosmology results we estimate that this effect introduces an additional systematic uncertainty on ww of ~0.02, well below the total uncertainty. However, this uncertainty depends on the samples used, and thus this small ww-uncertainty is not guaranteed in future cosmology results.Comment: accepted by Ap

    An Empirical Calibration of the Completeness of the SDSS Quasar Survey

    Get PDF
    Spectra of nearly 20000 point-like objects to a Galactic reddening corrected magnitude of i=19.1 have been obtained to test the completeness of the SDSS quasar survey. The spatially-unresolved objects were selected from all regions of color space, sparsely sampled from within a 278 sq. deg. area of sky covered by this study. Only ten quasars were identified that were not targeted as candidates by the SDSS quasar survey (including both color and radio source selection). The inferred density of unresolved quasars on the sky that are missed by the SDSS algorithm is 0.44 per sq. deg, compared to 8.28 per sq. deg. for the selected quasar density, giving a completeness of 94.9(+2.6,-3.8) to the limiting magnitude. Omitting radio selection reduces the color-only selection completeness by about 1%. Of the ten newly identified quasars, three have detected broad absorption line systems, six are significantly redder than other quasars at the same redshift, and four have redshifts between 2.7 and 3.0 (the redshift range where the SDSS colors of quasars intersect the stellar locus). The fraction of quasars missed due to image defects and blends is approximately 4%, but this number varies by a few percent with magnitude. Quasars with extended images comprise about 6% of the SDSS sample, and the completeness of the selection algorithm for extended quasars is approximately 81%, based on the SDSS galaxy survey. The combined end-to-end completeness for the SDSS quasar survey is approximately 89%. The total corrected density of quasars on the sky to i=19.1 is estimated to be 10.2 per sq. deg.Comment: 37 pages, 10 figures, accepted for publication in A

    The Lyman-alpha Forest Power Spectrum from the Sloan Digital Sky Survey

    Full text link
    We measure the power spectrum, P_F(k,z), of the transmitted flux in the Ly-alpha forest using 3035 high redshift quasar spectra from the Sloan Digital Sky Survey. This sample is almost two orders of magnitude larger than any previously available data set, yielding statistical errors of ~0.6% and ~0.005 on, respectively, the overall amplitude and logarithmic slope of P_F(k,z). This unprecedented statistical power requires a correspondingly careful analysis of the data and of possible systematic contaminations in it. For this purpose we reanalyze the raw spectra to make use of information not preserved by the standard pipeline. We investigate the details of the noise in the data, resolution of the spectrograph, sky subtraction, quasar continuum, and metal absorption. We find that background sources such as metals contribute significantly to the total power and have to be subtracted properly. We also find clear evidence for SiIII correlations with the Ly-alpha forest and suggest a simple model to account for this contribution to the power. While it is likely that our newly developed analysis technique does not eliminate all systematic errors in the P_F(k,z) measurement below the level of the statistical errors, our tests indicate that any residual systematics in the analysis are unlikely to affect the inference of cosmological parameters from P_F(k,z). These results should provide an essential ingredient for all future attempts to constrain modeling of structure formation, cosmological parameters, and theories for the origin of primordial fluctuations.Comment: 92 pages, 45 of them figures, submitted to ApJ, data available at http://feynman.princeton.edu/~pmcdonal/LyaF/sdss.htm

    Examining the impact of health research facilitated by small peer-reviewed research operating grants in a women's and children's health centre

    Get PDF
    Abstract Background There has been limited research on the impact of research funding for small, institutional grants. The IWK Health Centre, a children and women's hospital in Maritime Canada, provides small amounts (up to $15,000) of research funding for staff and trainees at all levels of experience through its Research Operating Grants. These grants are rigorously peer-reviewed. To evaluate the impact of these grants, an assessment was completed of several different areas of impact. Findings An online questionnaire was sent to 64 Principal Investigators and Co-Investigators from Research Operating Grants awarded from 2004 to 2006. The questionnaire was designed to assess five areas of potential impact: (1) research, (2) policy, (3) practice, (4) society and (5) personal. Research impact reported by participants included publications (72%), presentations (82%) and knowledge transfer beyond the traditional formats (51%). Practice impact was reported by 67% of participants, policy impact by 15% and societal impact by 18%. All participants reported personal impact. Conclusions Small research grants yield similar impacts to relatively large research grants. Regardless of the total amount of research funds awarded, rigorously peer-reviewed research projects have the potential for significant impact at the level of knowledge transfer and changes in clinical practice and policy. Additional findings in the present research indicate that small awards have the potential to have significant impact on the individual grant holder across a variety of capacity building variables. These personal impacts are particularly noteworthy in the context of developing the research programs of novice researchers.</p

    The Black Hole-Bulge Relationship in Luminous Broad-Line Active Galactic Nuclei and Host Galaxies

    Full text link
    We have measured the stellar velocity dispersions (\sigma_*) and estimated the central black hole (BH) masses for over 900 broad-line active galactic nuclei (AGNs) observed with the Sloan Digital Sky Survey. The sample includes objects which have redshifts up to z=0.452, high quality spectra, and host galaxy spectra dominated by an early-type (bulge) component. The AGN and host galaxy spectral components were decomposed using an eigenspectrum technique. The BH masses (M_BH) were estimated from the AGN broad-line widths, and the velocity dispersions were measured from the stellar absorption spectra of the host galaxies. The range of black hole masses covered by the sample is approximately 10^6 < M_BH < 10^9 M_Sun. The host galaxy luminosity-velocity dispersion relationship follows the well-known Faber-Jackson relation for early-type galaxies, with a power-law slope 4.33+-0.21. The estimated BH masses are correlated with both the host luminosities (L_{H}) and the stellar velocity dispersions (\sigma_*), similar to the relationships found for low-redshift, bulge-dominated galaxies. The intrinsic scatter in the correlations are large (~0.4 dex), but the very large sample size allows tight constraints to be placed on the mean relationships: M_BH ~ L_H^{0.73+-0.05} and M_BH ~ \sigma_*^{3.34+-0.24}. The amplitude of the M_BH-\sigma_* relation depends on the estimated Eddington ratio, such that objects with larger Eddington ratios have smaller black hole masses than expected at a given velocity dispersion.Comment: Accepted for publication in A

    SDSS J094604.90+183541.8: A Gravitationally Lensed Quasar at z=4.8

    Full text link
    We report the discovery of a gravitationally lensed quasar identified serendipitously in the Sloan Digital Sky Survey (SDSS). The object, SDSS J094604.90+183541.8, was initially targeted for spectroscopy as a luminous red galaxy, but the SDSS spectrum has the features of both a z=0.388 galaxy and a z=4.8 quasar. We have obtained additional imaging that resolves the system into two quasar images separated by 3.06 arcsec and a bright galaxy that is strongly blended with one of the quasar images. We confirm spectroscopically that the two quasar images represent a single lensed source at z=4.8 with a total magnification of 3.2, and we derive a model for the lensing galaxy. This is the highest redshift lensed quasar currently known. We examine the issues surrounding the selection of such an unusual object from existing data and briefly discuss implications for lensed quasar surveys.Comment: AJ accepted, 9 pages, 6 figures, referee suggestions include

    FIRST-2MASS Red Quasars: Transitional Objects Emerging from the Dust

    Get PDF
    We present a sample of 120 dust-reddened quasars identified by matching radio sources detected at 1.4 GHz in the FIRST survey with the near-infrared 2MASS catalog and color-selecting red sources. Optical and/or near-infrared spectroscopy provide broad wavelength sampling of their spectral energy distributions that we use to determine their reddening, characterized by E(B-V). We demonstrate that the reddening in these quasars is best-described by SMC-like dust. This sample spans a wide range in redshift and reddening (0.1 < z < 3, 0.1 < E(B-V) < 1.5), which we use to investigate the possible correlation of luminosity with reddening. At every redshift, dust-reddened quasars are intrinsically the most luminous quasars. We interpret this result in the context of merger-driven quasar/galaxy co-evolution where these reddened quasars are revealing an emergent phase during which the heavily obscured quasar is shedding its cocoon of dust prior to becoming a "normal" blue quasar. When correcting for extinction, we find that, depending on how the parent population is defined, these red quasars make up < 15-20% of the luminous quasar population. We estimate, based on the fraction of objects in this phase, that its duration is 15-20% as long as the unobscured, blue quasar phase.Comment: 21 pages, 17 figures plus a spectral atlas. Accepted for publication in the Astrophysical Journa

    Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Quasar Sample

    Get PDF
    We describe the algorithm for selecting quasar candidates for optical spectroscopy in the Sloan Digital Sky Survey. Quasar candidates are selected via their non-stellar colors in "ugriz" broad-band photometry, and by matching unresolved sources to the FIRST radio catalogs. The automated algorithm is sensitive to quasars at all redshifts lower than z=5.8. Extended sources are also targeted as low-redshift quasar candidates in order to investigate the evolution of Active Galactic Nuclei (AGN) at the faint end of the luminosity function. Nearly 95% of previously known quasars are recovered (based on 1540 quasars in 446 square degrees). The overall completeness, estimated from simulated quasars, is expected to be over 90%, whereas the overall efficiency (quasars:quasar candidates) is better than 65%. The selection algorithm targets ultraviolet excess quasars to i^*=19.1 and higher-redshift (z>3) quasars to i^*=20.2, yielding approximately 18 candidates per square degree. In addition to selecting ``normal'' quasars, the design of the algorithm makes it sensitive to atypical AGN such as Broad Absorption Line quasars and heavily reddened quasars.Comment: 62 pages, 15 figures (8 color), 8 tables. Accepted by AJ. For a version with higher quality color figures, see http://archive.stsci.edu/sdss/quasartarget/RichardsGT_qsotarget.preprint.p

    Quasar Clustering from SDSS DR5: Dependences on Physical Properties

    Full text link
    Using a homogenous sample of 38,208 quasars with a sky coverage of 4000deg24000 {\rm deg^2} drawn from the SDSS Data Release Five quasar catalog, we study the dependence of quasar clustering on luminosity, virial black hole mass, quasar color, and radio loudness. At z<2.5z<2.5, quasar clustering depends weakly on luminosity and virial black hole mass, with typical uncertainty levels 10\sim 10% for the measured correlation lengths. These weak dependences are consistent with models in which substantial scatter between quasar luminosity, virial black hole mass and the host dark matter halo mass has diluted any clustering difference, where halo mass is assumed to be the relevant quantity that best correlates with clustering strength. However, the most luminous and most massive quasars are more strongly clustered (at the 2σ\sim 2\sigma level) than the remainder of the sample, which we attribute to the rapid increase of the bias factor at the high-mass end of host halos. We do not observe a strong dependence of clustering strength on quasar colors within our sample. On the other hand, radio-loud quasars are more strongly clustered than are radio-quiet quasars matched in redshift and optical luminosity (or virial black hole mass), consistent with local observations of radio galaxies and radio-loud type 2 AGN. Thus radio-loud quasars reside in more massive and denser environments in the biased halo clustering picture. Using the Sheth et al.(2001) formula for the linear halo bias, the estimated host halo mass for radio-loud quasars is 1013h1M\sim 10^{13} h^{-1}M_\odot, compared to 2×1012h1M\sim 2\times 10^{12} h^{-1}M_\odot for radio-quiet quasar hosts at z1.5z\sim 1.5.Comment: Updated version; accepted for publication in Ap
    corecore