496 research outputs found

    An Integrated Framework for Process-Driven Model Construction in Disease Ecology and Animal Health

    Get PDF
    Process models that focus on explicitly representing biological mechanisms are increasingly important in disease ecology and animal health research. However, the large number of process modelling approaches makes it difficult to decide which is most appropriate for a given disease system and research question. Here, we discuss different motivations for using process models and present an integrated conceptual analysis that can be used to guide the construction of infectious disease process models and comparisons between them. Our presentation complements existing work by clarifying the major differences between modelling approaches and their relationship with the biological characteristics of the epidemiological system. We first discuss distinct motivations for using process models in epidemiological research, identifying the key steps in model design and use associated with each. We then present a conceptual framework for guiding model construction and comparison, organised according to key aspects of epidemiological systems. Specifically, we discuss the number and type of disease states, whether to focus on individual hosts (e.g., cows) or groups of hosts (e.g., herds or farms), how space or host connectivity affect disease transmission, whether demographic and epidemiological processes are periodic or can occur at any time, and the extent to which stochasticity is important. We use foot-and-mouth disease and bovine tuberculosis in cattle to illustrate our discussion and support explanations of cases in which different models are used to address similar problems. The framework should help those constructing models to structure their approach to modelling decisions and facilitate comparisons between models in the literature

    Individual-level factors associated with the risk of acquiring human Plasmodium knowlesi malaria in Malaysia: a case-control study.

    Get PDF
    BACKGROUND: The emergence of human malaria due to the monkey parasite Plasmodium knowlesi threatens elimination efforts in southeast Asia. Changes in land use are thought to be driving the rise in reported P knowlesi cases, but the role of individual-level factors is unclear. To address this knowledge gap we assessed human and environmental factors associated with zoonotic knowlesi malaria risk. METHODS: We did this population-based case-control study over a 2 year period in the state of Sabah in Malaysia. We enrolled cases with microscopy-positive, PCR-confirmed malaria who presented to two primary referral hospitals serving the adjacent districts of Kudat and Kota Marudu. We randomly selected three malaria-negative community controls per case, who were matched by village within 2 weeks of case detection. We obtained questionnaire data on demographics, behaviour, and residential malaria risk factors, and we also assessed glucose-6-phosphate dehydrogenase (G6PD) enzyme activity. We used conditional logistic regression models to evaluate exposure risk between P knowlesi cases and controls, and between P knowlesi and human-only Plasmodium spp malaria cases. FINDINGS: From Dec 5, 2012, to Jan 30, 2015, we screened 414 patients and subsequently enrolled 229 cases with P knowlesi malaria mono-infection and 91 cases with other Plasmodium spp infection. We enrolled 953 matched controls, including 683 matched to P knowlesi cases and 270 matched to non-P knowlesi cases. Age 15 years or older (adjusted odds ratio [aOR] 4·16, 95% CI 2·09-8·29, p<0·0001), male gender (4·20, 2·54-6·97, p<0·0001), plantation work (3·50, CI, 1·34-9·15, p=0·011), sleeping outside (3·61, 1·48-8·85, p=0·0049), travel (2·48, 1·45-4·23, p=0·0010), being aware of the presence of monkeys in the past 4 weeks (3·35, 1·91-5·88, p<0·0001), and having open eaves or gaps in walls (2·18, 1·33-3·59, p=0·0021) were independently associated with increased risk of symptomatic P knowlesi infection. Farming occupation (aOR 1·89, 95% CI 1·07-3·35, p=0·028), clearing vegetation (1·89, 1·11-3·22, p=0·020), and having long grass around the house (2·08, 1·25-3·46, p=0·0048) increased risk for P knowlesi infection but not other Plasmodium spp infection. G6PD deficiency seemed to be protective against P knowlesi (aOR 0·20, 95% CI 0·04-0·96, p=0·045), as did residual insecticide spraying of household walls (0·52, 0·31-0·87, p=0·014), with the presence of young sparse forest (0·35, 0·20-0·63, p=00040) and rice paddy around the house (0·16, 0·03-0·78, 0·023) also associated with decreased risk. INTERPRETATION: Adult men working in agricultural areas were at highest risk of knowlesi malaria, although peri-domestic transmission also occurrs. Human behavioural factors associated with P knowlesi transmission could be targeted in future public health interventions. FUNDING: United Kingdom Medical Research Council, Natural Environment Research Council, Economic and Social Research Council, and Biotechnology and Biosciences Research Council

    Modifications to student quarantine policies in K-12 schools implementing multiple COVID-19 prevention strategies restores in-person education without increasing SARS-CoV-2 transmission risk, January-March 2021

    Get PDF
    OBJECTIVE: To determine whether modified K-12 student quarantine policies that allow some students to continue in-person education during their quarantine period increase schoolwide SARS-CoV-2 transmission risk following the increase in cases in winter 2020-2021. METHODS: We conducted a prospective cohort study of COVID-19 cases and close contacts among students and staff (n = 65,621) in 103 Missouri public schools. Participants were offered free, saliva-based RT-PCR testing. The projected number of school-based transmission events among untested close contacts was extrapolated from the percentage of events detected among tested asymptomatic close contacts and summed with the number of detected events for a projected total. An adjusted Cox regression model compared hazard rates of school-based SARS-CoV-2 infections between schools with a modified versus standard quarantine policy. RESULTS: From January-March 2021, a projected 23 (1%) school-based transmission events occurred among 1,636 school close contacts. There was no difference in the adjusted hazard rates of school-based SARS-CoV-2 infections between schools with a modified versus standard quarantine policy (hazard ratio = 1.00; 95% confidence interval: 0.97-1.03). DISCUSSION: School-based SARS-CoV-2 transmission was rare in 103 K-12 schools implementing multiple COVID-19 prevention strategies. Modified student quarantine policies were not associated with increased school incidence of COVID-19. Modifications to student quarantine policies may be a useful strategy for K-12 schools to safely reduce disruptions to in-person education during times of increased COVID-19 community incidence

    Predictive analysis across spatial scales links zoonotic malaria to deforestation.

    Get PDF
    The complex transmission ecologies of vector-borne and zoonotic diseases pose challenges to their control, especially in changing landscapes. Human incidence of zoonotic malaria ( Plasmodium knowlesi) is associated with deforestation although mechanisms are unknown. Here, a novel application of a method for predicting disease occurrence that combines machine learning and statistics is used to identify the key spatial scales that define the relationship between zoonotic malaria cases and environmental change. Using data from satellite imagery, a case-control study, and a cross-sectional survey, predictive models of household-level occurrence of P. knowlesi were fitted with 16 variables summarized at 11 spatial scales simultaneously. The method identified a strong and well-defined peak of predictive influence of the proportion of cleared land within 1 km of households on P. knowlesi occurrence. Aspect (1 and 2 km), slope (0.5 km) and canopy regrowth (0.5 km) were important at small scales. By contrast, fragmentation of deforested areas influenced P. knowlesi occurrence probability most strongly at large scales (4 and 5 km). The identification of these spatial scales narrows the field of plausible mechanisms that connect land use change and P. knowlesi, allowing for the refinement of disease occurrence predictions and the design of spatially-targeted interventions

    Predictive analysis across spatial scales links zoonotic malaria to deforestation.

    Get PDF
    The complex transmission ecologies of vector-borne and zoonotic diseases pose challenges to their control, especially in changing landscapes. Human incidence of zoonotic malaria ( Plasmodium knowlesi) is associated with deforestation although mechanisms are unknown. Here, a novel application of a method for predicting disease occurrence that combines machine learning and statistics is used to identify the key spatial scales that define the relationship between zoonotic malaria cases and environmental change. Using data from satellite imagery, a case-control study, and a cross-sectional survey, predictive models of household-level occurrence of P. knowlesi were fitted with 16 variables summarized at 11 spatial scales simultaneously. The method identified a strong and well-defined peak of predictive influence of the proportion of cleared land within 1 km of households on P. knowlesi occurrence. Aspect (1 and 2 km), slope (0.5 km) and canopy regrowth (0.5 km) were important at small scales. By contrast, fragmentation of deforested areas influenced P. knowlesi occurrence probability most strongly at large scales (4 and 5 km). The identification of these spatial scales narrows the field of plausible mechanisms that connect land use change and P. knowlesi, allowing for the refinement of disease occurrence predictions and the design of spatially-targeted interventions

    Infantile exposure to lead and late-age cognitive decline: Relevance to AD

    Get PDF
    Background: Early-life lead (Pb) exposure induces overexpression of the amyloid beta precursor protein and its amyloid beta product in older rats and primates. We exposed rodents to Pb during different life span periods and examined cognitive function in old age and its impact on biomarkers associated with Alzheimer\u27s disease (AD). Methods: Morris, Y, and the elevated plus mazes were used. Western blot, quantitative polymerase chain reaction (qPCR), and enzyme-linked immunosorbent assay were used to study the levels of AD biomarkers. Results: Cognitive impairment was observed in mice exposed as infants but not as adults. Overexpression of AD-related genes (amyloid beta precursor protein and β-site amyloid precursor protein cleaving enzyme 1) and their products, as well as their transcriptional regulator—specificity protein 1 (Sp1)—occurred only in older mice with developmental exposure to Pb. Conclusions: A window of vulnerability to Pb neurotoxicity exists in the developing brain that can influence AD pathogenesis and cognitive decline in old age

    Unusual Interferon Gamma Measurements with QuantiFERON-TB Gold and QuantiFERON-TB Gold In-Tube Tests

    Get PDF
    INTRODUCTION: Interferon gamma (IFN-γ) release assays, such as QuantiFERON®-TB Gold test (QFT-G) and QuantiFERON®-TB Gold In-Tube test (QFT-GIT) are designed to detect M. tuberculosis (Mtb) infection. Recognition of unusual IFN-γ measurements may help indicate inaccurate results. METHODS: We examined QFT-G and QFT-GIT results from subjects who had two or more tests completed. We classified unusual IFN-γ measurements as: 1) High Nil Concentration (HNC) when IFN-γ concentration in plasma from unstimulated blood exceeded 0.7 IU/mL; 2) Low Mitogen Response (LMR) when Mitogen Response was <0.5 IU/mL; 3) Very Low Mitogen Response (VLMR) when Mitogen Response was ≤-0.5 IU/mL; and 4) Very Low Antigen Response (VLAR) when the response to a Mtb antigen was ≤-0.35 IU/mL and ≤-0.5 times the IFN-γ concentration in plasma from unstimulated blood. RESULTS: Among 5,309 results from 1,728 subjects, HNC occurred in 234 (4.4%) tests for 162 subjects, LMR in 108 (2.0%) tests for 85 subjects, VLMR in 22 (0.4%) tests for 21 subjects, and VLAR in 41 (0.8%) tests for 39 subjects. QFT-GIT had fewer HNC, VLMR, and VLAR (p = 0.042, 0.004, and 0.067 respectively); QFT-G had fewer LMR (p = 0.005). Twenty-four (51.6%) of 47 subjects with positive results and HNC were negative or indeterminate by all other tests. Thirteen (61.9%) of 21 subjects with positive results and LMR were negative or indeterminate by all other tests. CONCLUSION: Unusual IFN-γ measurements including HNC, LMR, VLMR, and VLAR were encountered in small numbers, and in most instances were not seen on simultaneously or subsequently performed tests. To avoid erroneous diagnosis of Mtb infection, IGRAs with unusual IFN-γ measurements should be repeated with another blood sample and interpreted with caution if they recur

    Long-Tailed Macaque Response to Deforestation in a Plasmodium knowlesi-Endemic Area.

    Get PDF
    Land-use changes can impact infectious disease transmission by increasing spatial overlap between people and wildlife disease reservoirs. In Malaysian Borneo, increases in human infections by the zoonotic malaria Plasmodium knowlesi are hypothesised to be due to increasing contact between people and macaques due to deforestation. To explore how macaque responses to environmental change impact disease risks, we analysed movement of a GPS-collared long-tailed macaque in a knowlesi-endemic area in Sabah, Malaysia, during a deforestation event. Land-cover maps were derived from satellite-based and aerial remote sensing data and models of macaque occurrence were developed to evaluate how macaque habitat use was influenced by land-use change. During deforestation, changes were observed in macaque troop home range size, movement speeds and use of different habitat types. Results of models were consistent with the hypothesis that macaque ranging behaviour is disturbed by deforestation events but begins to equilibrate after seeking and occupying a new habitat, potentially impacting human disease risks. Further research is required to explore how these changes in macaque movement affect knowlesi epidemiology on a wider spatial scale
    corecore