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ABSTRACT (max 200 words) 22 

 23 

The complex transmission ecologies of vector-borne and zoonotic diseases pose challenges 24 

to their control, especially in changing landscapes. Human incidence of zoonotic malaria 25 

(Plasmodium knowlesi) is associated with deforestation although mechanisms are unknown. 26 

Here, a novel application of a method for predicting disease occurrence that combines 27 

machine learning and statistics is used to identify the key spatial scales that define the 28 

relationship between zoonotic malaria cases and environmental change. Using data from 29 

satellite imagery, a case control study, and a cross-sectional survey, predictive models of 30 

household-level occurrence of P. knowlesi were fitted with 16 variables summarised at 11 31 

spatial scales simultaneously. The method identified a strong and well-defined peak of 32 

predictive influence of the proportion of cleared land within 1 km of households on P. 33 

knowlesi occurrence. Aspect (1 and 2km), slope (0.5km) and canopy regrowth (0.5km) were 34 

important at small scales. In contrast, fragmentation of deforested areas influenced P. 35 

knowlesi occurrence probability most strongly at large scales (4 and 5 km). The identification 36 

of these spatial scales narrows the field of plausible mechanisms that connect land use 37 

change and P. knowlesi, allowing for the refinement of disease occurrence predictions and 38 

the design of spatially-targeted interventions. 39 

 40 

 41 

Key words (3-6 only): disease ecology, zoonoses, malaria, Plasmodium knowlesi, boosted 42 

regression trees, disease occurrence prediction 43 

 44 

 45 
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INTRODUCTION (4367 words) 46 

 47 

Infectious disease mapping plays a vital role in guiding public health policy and practice  [1]. 48 

For diseases with environmental drivers, such as malaria, mapping has supported the 49 

ongoing and successful drive to reduce the number of infections worldwide and has been 50 

pivotal to understanding the effectiveness and progress of this effort [1-4]. As control 51 

reduces incidence, the geographical distribution of infection becomes more heterogeneous 52 

[5]. In situations where few data are available, predicted probability of disease occurrence 53 

can be mapped in place of measures such as incidence or prevalence. This approach has 54 

been applied to a variety of infectious disease systems using methods that combine the 55 

strengths of machine learning and statistics, originally developed to more accurately map 56 

species distributions in ecology (e.g. [6-8]). In addition to geostatistical mapping, disease 57 

occurrence mapping has helped describe the spatial distribution of infectious diseases 58 

worldwide, and provided information relevant to the design and execution of disease 59 

control programmes (e.g. [9-11]). 60 

 61 

Ensemble boosted regression tree (BRT) analysis is one such method that is now widely 62 

used for disease occurrence mapping [6, 11, 12]. BRT analysis is increasingly used to identify 63 

patterns in large infectious disease datasets, building on analytical developments in 64 

macroecology [12-15], and has been used to generate hypotheses from these patterns [15]. 65 

BRT analysis combines decision trees, in which trees are grown with binary splits of 66 

predictor values to minimise prediction errors, and boosting, in which a collection of models 67 

are combined [16]. It allows for the uneven distribution of variation in predictor variables 68 
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without the need for transformation, is not biased by correlation between predictors, can 69 

incorporate complex interactions and fit non-linear functions [16].  70 

 71 

A disadvantage of disease occurrence mapping is the difficulty identifying how different 72 

factors contribute to models that generate their spatial predictions; predictions may be 73 

sufficiently reliable, but it may not be clear why [14]. This is particularly problematic in 74 

relation to the scale of processes that could give rise to spatial heterogeneity of disease, as 75 

the environmental data used to predict occurrence are usually aggregated on a single 76 

spatial scale (e.g. square grid cells of 5 km x 5 km). This may be unavoidable if, for example, 77 

satellite data are only available at a fixed resolution, or census data are pre-aggregated over 78 

administrative units. However, even when disaggregated data are available at high 79 

resolution, there is often no evidence-based methodological recourse to guide decisions on 80 

the appropriate spatial scale for inclusion in models. Ecological processes occur at different 81 

spatial scales and the scale at which analyses of disease distributions are conducted 82 

influences the inferred contribution of the determinants of those distributions [17-19]. 83 

 84 

Differences between the spatial scales of the underlying biological processes that drive 85 

disease transmission and the scale imposed on models by the aggregation of predictor 86 

variables (such as into raster grid cells) is likely to be particularly influential in models of 87 

zoonoses and vector-borne diseases. Transmission dynamics of these diseases arise from 88 

the interaction of multiple species and the environment, likely occurring over a variety of 89 

spatial scales, which makes it less likely that predictors aggregated at a single spatial scale 90 

will capture important variation, especially if the influences of multiple scales are 91 

dependent on one another, and when few data are available [20].  92 
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 93 

Plasmodium knowlesi malaria is a vector-borne zoonosis in South East Asia, which usually 94 

infects long-tailed (Macaca fascicularis) and pig-tailed macaques (Macaca nemestrina) [21]. 95 

Transmitted by the Anopheles leucosphyrus group of mosquitoes, changes in forest cover 96 

impact vector habitats as well as macaque and human distributions [22]. Identified as a 97 

potentially lethal infection in humans and a major public health concern in 2004 [23], P. 98 

knowlesi is now the most common cause of malaria in Malaysia and parts of Indonesia, 99 

global hotspots of tropical deforestation [24-26]. It may be misdiagnosed or undiagnosed 100 

across South East Asia, and the World Health Organisation has advised it be incorporated 101 

into ongoing malaria elimination programmes [27]. Due to this increasing public health 102 

concern, P. knowlesi was proposed as a global priority for disease mapping [4] and has since 103 

been mapped by BRT analysis, using historical data to highlight priority areas for 104 

surveillance [6]. 105 

 106 

This study introduces a novel approach to spatial scale in disease occurrence prediction as a 107 

tool to identify the key scales that define the relationship between a zoonosis of serious 108 

public health concern (Plasmodium knowlesi malaria) and the rapidly changing landscape 109 

implicated in its spillover from macaques to humans in South East Asia. Where the highest 110 

numbers of cases have been reported (Malaysian Borneo), P. knowlesi incidence has been 111 

positively associated both with forest cover and historical forest loss [28]. However, the 112 

mechanisms of the proposed influence of deforestation on P. knowlesi transmission are 113 

unknown; for example, this could be due to changes in macaque densities, vector bionomics 114 

or human behaviour. For the purposes of control, this precludes the assessment of which 115 

part(s) of the transmission cycle to target and which kind of interventions are most likely to 116 
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be effective at which spatial scales. For example, if regulating land use change to reduce the 117 

proximity of macaque to humans, how far should regulated zones extend from planned or 118 

existing settlements? The spatial scales that define P. knowlesi occurrence identified by this 119 

study provide important hitherto missing information to inform such spatially targeted 120 

control measures. 121 

 122 

METHODS 123 

 124 

Ethics approval and informed consent 125 

This study was approved by the Medical Research Sub-Committee of the Malaysian Ministry 126 

of Health and the Research Ethics Committee of the London School of Hygiene and Tropical 127 

Medicine. Written informed consent was obtained from all participants.  128 

 129 

Case and household data 130 

Data on household locations of consenting PCR-confirmed P. knowlesi cases (n=206) were 131 

obtained from a case control study carried out between 2012 and 2014 in Kudat and Kota 132 

Marudu districts, Northern Sabah, Malaysian Borneo [29] and used as presence points. In 133 

this study, control households were selected in the vicinity of cases households, making 134 

them unsuitable for use as absence points due to spatial sampling bias. Instead, absence 135 

households were identified from the sampling frame of a cross-sectional survey geo-locating 136 

all households within 180 randomly selected villages in four districts in Northern Sabah 137 

(Fornace et al, in prep). Absence points were identified from households not reporting 138 

clinical knowlesi cases within the two districts included in the case control study. These 139 

absence points were filtered so that there were no more than 5 per village, with the first 140 
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absence point in each village sampled randomly, and the remainder chosen to maximise the 141 

total distance between absence points within that village to ensure spatial 142 

representativeness. Absence points were excluded if they were further than 5 km from a 143 

presence point (to prevent large areas being covered only by absences), nearer than 0.2 km 144 

to a presence point or did not have permanent residents. Presence and absence points were 145 

excluded if they were located within an urban area, determined using administrative 146 

boundaries, as travel histories suggest cases reported in urban areas are unlikely to have 147 

been contracted in urban areas [29]. These filters resulted in a dataset including 206 148 

presence points, 43 of which were located on the island of Banggi, and 1324 absence points, 149 

105 of which were located on the island of Banggi. All household locations were visited and 150 

geolocated using a handheld GPS (Garmin, USA).  151 

 152 

Landscape variables 153 

 154 

Data on forest cover at 30m resolution was obtained from Hansen et. al, [26], with annual 155 

forest cover defined categorically as over 50% canopy cover based on data derived from 156 

Landsat imagery. Although this definition of forest may not differentiate between forest and 157 

plantations, canopy cover has previously been associated with P. knowlesi incidence [28]. 158 

Cases were approximately evenly divided between 2013 (n = 101) and 2014 (n = 105), and 159 

as the annual classified satellite data composition method tracks back in time as far as 160 

necessary to find cloud-free imagery covering all locations, a frequent issue in Borneo [26], 161 

forest data was extracted from the 2014 annual composite as it was most likely to represent 162 

the environment contemporaneous with case reporting. 163 

 164 
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Scalable variables were extracted from forest cover data, including proportions of recent 165 

(previous year) and historical (previous 5 years) forest loss and cleared areas (Table 1). Data 166 

on forest gain was only available aggregated over the period 2000-2012 and was included to 167 

represent types of land use distinct from straightforward forest persistence or clearance, 168 

such as agroforestry. Perimeter area ratio (P:A) was used as a proxy for fragmentation of 169 

these land cover categories, as variation in P:A was more evenly distributed across variables 170 

than other fragmentation measures. 171 

 172 

Other environmental variables previously associated with malaria [30] were included as 173 

predictors in BRT models, including elevation, aspect and slope [31]. Average annual 174 

normalized difference vegetation index (NDVI), which quantifies the greenness of 175 

vegetation, was calculated from the Landsat imagery used as input for the Hansen et al. [26] 176 

2014 classification. Additionally, the standard deviation of NDVI was also included, as 177 

variance in NDVI values in space may identify habitat type contrasts and boundaries. To 178 

address the possibility of reporting bias, the distance to the nearest clinic and the minimum 179 

distance to any road were included in a subset of BRT models. A list of clinics in the study 180 

area was obtained from the Ministry of Health, Malaysia, and all clinics and roads were geo-181 

located using a hand-held GPS (Garmin 62s, Schaffhausen, Switzerland). All variables were 182 

extracted at 30m resolution.  183 

 184 

Spatial scales 185 

16 scalable variables (Table 1) were summarised over buffer areas determined by a 186 

maximum overland distance of 0.1, 0.2, 0.5, 1, 2, 3, 4, 5, 7.5, 10 and 20 km (‘spatial scales’) 187 

from each household. Maximum overland distances (i.e. areas containing all grid cells less 188 
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than the threshold overland distance from the focal household) were used rather than 189 

circular buffers to exclude parts of the landscape separated from focal households by water. 190 

 191 

Ensemble boosted regression tree analysis 192 

To balance the influence of presence and absence points [32] and quantify uncertainty [8], 193 

models were run on 100 datasets, each including all presence points (n = 206) and an equal 194 

number of randomly sampled (without replacement) absence points. To describe variation 195 

in the contribution of variables to predictive ability across scales, a model was fitted with all 196 

scalable variables included at all spatial scales (11 spatial scales and 16 variables giving 176 197 

predictors). An additional model was fitted in which two non-scalable variables (shortest 198 

distance to clinic and road) were added (178 predictors). To compare overall predictive 199 

ability across scales, eleven ensemble models were fitted, one for each spatial scale (16 200 

predictors each). A version of all models was fitted to data from the mainland only, 201 

excluding cases not on the main island of Borneo (e.g. on Banggi island) to examine whether 202 

these associations were impacted by the inclusion of households within smaller land areas. 203 

 204 

Models were fitted by 10-fold cross-validation, dividing the dataset into 10 training sets with 205 

each comprising a unique combination of 9 subsets of the data with the remaining subset 206 

withheld for independent validation [16]. Model predictive ability was assessed using area 207 

under the receiver operator curve (AUC). The tree complexity parameter of the boosted 208 

regression tree analysis was set at 5, so that each decision tree built as part of the model 209 

included five nodes, allowing for complex interactions between predictor variables. The 210 

learning rate, which determines the contribution of each decision tree to a BRT model, was 211 

tuned to between 0.0001 and 0.002 to minimise prediction error during cross-validation 212 
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(23). Marginal effect curves, the effect of the change in one unit of the predictor on the 213 

probability of disease occurrence, were plotted for all predictors by scale.  214 

 215 

Relative variable importance  216 

 217 

Profiles of relative variable importance (RVI) for landscape variables across spatial scales 218 

were derived from models that included all scales simultaneously so that the importance of 219 

scale variable-combinations could be assessed while accounting for the contributions of all 220 

other variable-scale combinations and interactions between them. RVI measures the 221 

number of times a variable is selected for splitting during the construction of a BRT model, 222 

weighted by the squared improvement of the model due to the split, averaged over all trees 223 

in the model [16].  To aid the interpretation of RVI across scales within variables, Spearman 224 

rank correlation matrices comparing values between all pairwise combinations of scales 225 

were plotted for each variable 226 

 227 

To test whether peaks of RVI were driven by changes in variance available to BRT models 228 

across scales, variance was superimposed on RVI profiles. This is a necessary check, as if RVI 229 

tracked variance across correlated scales within variables, we could not preclude differences 230 

in RVI across scales arising due to an artefact of available variance alone. To aid 231 

interpretation, variances were plotted as proportions of maximum variance across scales for 232 

each landscape variable. Relative variance was compared with median RVI using Spearman 233 

rank correlation tests across the whole study site. 234 

 235 

Case clusters 236 
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To investigate whether analysis across spatial scales could be used to distinguish different 237 

sets of epidemiological circumstances driving P. knowlesi spillover, a cluster analysis was 238 

performed on the model fitted (whole-study-site, scalable variables only) marginal 239 

probabilities of occurrence for each scalable variable (n = 176) for all cases (n = 206). Cases 240 

were clustered into two groups using Ward’s minimum variance method [33]. 241 

 242 

Data availability 243 

All analyses were performed in R and code and sample environmental data are available at: 244 

https://github.com/kfornace/monkeybar. Due to data confidentiality, human disease and 245 

household data are available through contacting relevant ethics committees as described in 246 

[29, 34]. 247 

 248 

RESULTS 249 

 250 

Relative variable importance across scales 251 

RVI was extracted from an ensemble BRT model of P. knowlesi occurrence in Sabah, 252 

Malaysian Borneo, including 176 predictors and 16 scalable landscape variables (Table 1.) 253 

summarised at 11 spatial scales (Fig. 1). The emergent peaks in RVI profiles show that the 254 

influence of several variables on P. knowlesi occurrence prediction is strongly dependent on 255 

the spatial scale of their aggregation. The median relative importance of the proportion of 256 

cleared land was more than threefold higher when aggregated over a radius of 1 km from 257 

households than at any other scale in the mainland-only model, and more than twofold 258 

higher in the whole-study-site model (Fig. 1c). This was also the variable-scale combination 259 

with the highest RVI of the 176 predictors included in the whole-study-site model (Fig. S1a). 260 
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The corresponding marginal effect curve shows that probability of P. knowlesi occurrence 261 

was greater at lower proportions of cleared land within 1 km of households (Fig. 2). 262 

 263 

The RVI profiles of five other variables included peaks at similar scales (Fig. 1 & Table 1): 264 

mean aspect (1 and 2 km), mean slope (0.5 km), gain all years (0.5 km), population density 265 

(2 km) and loss previous year (0.5 km). The probability of P. knowlesi occurrence was 266 

predicted to be highest on west-facing slopes (higher aspect values, averaged over 1 and 2 267 

km), which were relatively steep (averaged over 0.5 km), that both gained a relatively high 268 

proportion of canopy cover between 2000 and 2012 and lost a relatively high proportion of 269 

canopy in 2014 (both averaged over 0.5 km), and where (averaged over 2 km) few people 270 

lived (Fig. 2). 271 

 272 

The fragmentation of forest loss was also an important predictor of P. knowlesi occurrence 273 

but only at relatively large spatial scales (e.g. 4-5km, Fig. 1f and 1h). A similar pattern was 274 

observed both for the fragmentation of forest loss in the previous year (peak at 5 km) and in 275 

the previous five years (peaks at 4 km and 5 km), with the highest probability of P. knowlesi 276 

occurrence predicted when the landscape distribution of forest loss was most fragmented 277 

on these scales (Fig. 2). 278 

 279 

The fragmentation of cleared land (as distinct from forest loss, see Table 1) in the previous 280 

year was important at 5 km (Fig. 1d), as well as at three other scales (0.1, 0.2 and 0.5 km). 281 

The importance of three consecutive scales for one variable is likely to be due to correlation 282 

across scales, and correlations were high in this case (Fig. S3d). However, the correlation 283 

between small (0.1, 0.2 and 0.5 km) and large scale (5 km) aggregations was substantially 284 
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lower (Fig. S3d), which might suggest a real biological influence of this variable on two 285 

scales simultaneously. However, as the variance in this predictor variable was correlated 286 

with RVI (Fig. S4) at small spatial scales, the possibility of their importance being artefactual 287 

at these scales cannot be ruled out, as higher variance is likely to lead to more frequent 288 

inclusion of variables in the decision trees that make up BRT models. The same 289 

interpretational caveat applies to the standard deviation of NDVI at 0.1km (Fig. S4). 290 

 291 

Variance across scales 292 

In general, the peaks of RVI (Figure 1) do not arise from an artefact of correlation with 293 

variance (Fig. S4 and Table S1). However, in the case of the fragmentation of cleared land in 294 

the previous year, some caution is required in the interpretation of the importance of the 295 

smaller spatial scales. First, the comparison of variance with RVI across scales (Figure S4d) 296 

and their correlation (Table S1) suggest that RVI may be influenced by variance available to 297 

the model. Second, as the grid cells that make up the landscape variable layers are square, 298 

the perimeter length of patches will be overestimated at small scales [35]. In addition, the 299 

marginal effect curve for cleared P:A (previous year) at 5 km covers a greater range of 300 

predicted probability than those at the smaller scales of 0.1, 0.2 and 0.5 km (Fig. 2). 301 

 302 

Although the standard deviation of NDVI at 0.1 km appears in the top 16 variable-scale 303 

combinations, the same caveat relating to changing variance across scales applies as above 304 

because RVI tracks variance (Fig. S4). Therefore, it is possible that 0.1 km emerges as the 305 

most important scale due to an artefact of variance available to the model, rather than due 306 

to the influence of an underlying biological process on this scale. In addition, the marginal 307 

effect curve for SD NDVI 0.1 km does not suggest a strong influence on P. knowlesi 308 
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occurrence probability (Fig. 2). The same applies to the importance of cover P:A at 0.1 km, 309 

as RVI tracks variance across scales (Fig. 2 and Table S1), and perimeters will be over-310 

estimated at small scales. 311 

 312 

Non-scaled variables 313 

The median prediction accuracy (area under the receiver operator curve, AUC) of P. 314 

knowlesi occurrence across the whole study site was 0.76. The inclusion of two non-scalable 315 

variables, the shortest distance from households to the nearest clinic and road were 316 

included, increased this to 0.78. The shortest distance to road had the highest RVI in this 317 

model (Fig. S1b), with the probability of P. knowlesi occurrence predicted to be highest at 318 

households furthest from roads (Fig. S2). The addition of the two non-scalable variables only 319 

increased median AUC by 0.02, and gave rise to only minor changes in the most important 320 

variable-scale combinations (Fig. S1) and negligible differences in their marginal effect 321 

curves (Fig. 2 and S2). This suggests much of the variation explained by distance to roads 322 

and clinics is explained by included landscape factors; for example, distance to roads is likely 323 

highly correlated with population density and forest cover. This model was used to generate 324 

P. knowlesi human case occurrence predictions for all the households (Fig. 3a). The 325 

corresponding plot of prediction error by household shows there is little clustering of 326 

prediction error in space, and therefore that the model is not overly influenced by 327 

households in one area (Fig. 3b). 328 

 329 

Case clusters 330 

The division of case locations only (n = 206) by the marginal occurrence probabilities of the 331 

whole-study-site model into two clusters produced one cluster of 93 cases (cluster A) and 332 
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another of 113 cases (cluster B). The two clusters appear to be spatially distinct, with cluster 333 

A mainly occurring on the mainland of the district of Kudat, and cluster B occurring on the 334 

island of Banggi and in the south of the Kudat peninsula (Fig. 2c). Exploration of the 335 

differences between clusters by examination of the 15 variable-scale combinations with the 336 

highest median marginal probability differences between clusters showed that cases in 337 

cluster A were characterised by low canopy cover, high proportion of cleared land and high 338 

population density at large spatial scales (Fig. S5). 339 

 340 

Prediction accuracy across scales 341 

The ability of single-scale BRT models to predict P. knowlesi occurrence varied from an AUC 342 

of 0.55 (little better than a random model) to a maximum of 0.82. Models fitted to the 343 

smallest spatial scales had the lowest predictive power, those fitted to intermediate scales 344 

had the highest predictive power, and models that included all scales simultaneously 345 

performed better on average than all single-scale models (Fig. S6). 346 

 347 

DISCUSSION 348 

 349 

A key unanswered question about P. knowlesi transmission is what mechanism(s) give rise 350 

to the observed association between deforestation and human P. knowlesi incidence [28].  351 

This study examines the influence of the absence of forest (cleared land), the process of 352 

forest loss, and the landscape distribution of forest loss (fragmentation) by spatial scale. 353 

This not only provides evidence that landscape fragmentation influences P. knowlesi 354 

spillover into humans, as it is thought to for other zoonoses such as Lyme disease [36] and 355 
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Ebola [37], but also identifies the spatial scale of the influence of fragmentation on knowlesi 356 

transmission (within 4 and 5 km of households). 357 

 358 

Consideration of the multiple spatial scales identified by this new analytical approach with 359 

corresponding marginal effect curves can suggest drivers of the observed patterns of 360 

disease occurrence. The effects of human, macaque and vector movement and density likely 361 

contribute to the spatial scale at which different landscape factors are predictive. For 362 

example, if individuals are exposed outside the house, the large-scale influence of the 363 

fragmentation of deforested areas (4-5 km) could emerge as a property of P. knowlesi 364 

spillover if humans commuted to fragmented deforested areas over distances of up to 5 km, 365 

and/or were at risk while there because of the nature of their work. This is consistent with 366 

the findings of a case-control study undertaken in the same area, including an increased risk 367 

of knowlesi (but not non-knowlesi) malaria in those walking to or from work or school [29]. 368 

Alternatively, macaque troops may respond to deforestation on this emergent scale, 369 

because they move distances of up to 5 km in response to fragmentation beyond a 370 

threshold, exposing households in sink areas to an increase in macaque density, which 371 

would be consistent with what estimates there are of M. fascicularis home ranges [38]. The 372 

step-like marginal effect curve of the fragmentation of deforestation on the probability of P. 373 

knowlesi occurrence suggests such a threshold effect. In addition, increasing values of the 374 

fragmentation of cleared land at 5 km predicted a similar step-like increase in occurrence 375 

probability. This suggests that the deforestation fragmentation result is not only an effect of 376 

the immediate disturbance of forest removal on P. knowlesi transmission, but one that is 377 

rather (or also) influenced by the habitat geometry it leaves behind [39]. Although 5km was 378 

chosen as the maximum distance due to village distribution and the small spatial scale of 379 
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this study site (including islands), future work could explore whether landscape variables 380 

influence transmission at larger distances or explore the mechanisms behind these 381 

associations.  382 

 383 

The probability of P. knowlesi occurrence was highest when the proportion of cleared land 384 

within 1 km of households was low. This suggests that households isolated in patches of 385 

forest or plantation (with less than 10 % of the area within 1 km cleared) may be at the 386 

highest P. knowlesi exposure risk. This is in line with the traditional man-in-the-forest 387 

human P. knowlesi risk profile, which suggests that individuals who work on clearing forest 388 

or on plantations (usually adult men) are at highest risk of P. knowlesi infection, and 389 

additionally consistent with studies describing high vector densities in forest areas [22, 40]. 390 

When averaged over this same scale, aspect also had an important influence on predicted P. 391 

knowlesi occurrence. Aspect is associated with P. falciparum infection in humans [30] but is 392 

identified here as a potential determinant of P. knowlesi human infection risk for the first 393 

time. As households situated on west-facing slopes had the highest probabilities of disease, 394 

this may plausibly be because these households receive more sunlight in the afternoon, 395 

resulting in higher temperatures. For P. falciparum, increased temperature has been shown 396 

to shorten the duration of the incubation period in the mosquito or the length of the 397 

gonotrophic cycle, or speed up the development or increase the survival probability [41, 398 

42]. Alternatively, this association could arise through correlation between aspect and 399 

agricultural practice, with the peak of aspect RVI at 1 km arising from the way people 400 

modify (and the way both people and macaques use) agricultural land near households. P. 401 

knowlesi occurrence was also predicted to be higher at households on relatively steep 402 

slopes, which, as for aspect discussed above, could be a result of the influence of 403 
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temperature on mosquito life history and infection dynamics, and/or the way that humans 404 

and macaques respond to slope. For example, if relatively steep slopes are uncultivatable, 405 

they may provide refuge from disturbance for macaques. That canopy regrowth (gain all 406 

years, Table 1) had high RVI at the same scale as slope, suggests that peridomestic land use 407 

has an important influence over this scale, and therefore that the latter interpretation is 408 

more likely. Although this study has not equivocally identified mechanisms by which land 409 

use change influences human P. knowlesi infection risk, by mining the extra information 410 

contained within the spatial scale signatures of associations it has pared down the many 411 

plausible possibilities to a manageable number for further investigation. Future studies 412 

could additionally expand this analysis to evaluate the impact of different land use or forest 413 

types. 414 

 415 

A challenge to a synthesis of P. knowlesi epidemiology across South East Asia is the 416 

considerable regional variation in infection patterns and risk profiles. The degree to which 417 

infection risk is concentrated in men who work in forests or plantations, the extent to which 418 

peridomestic transmission occurs, and whether human-vector-human transmission occurs 419 

under natural conditions are open questions [29, 43, 44]. Cluster analysis partitioned cases 420 

occurring in this part of Malaysian Borneo into two geographical groups, each with distinct 421 

risk profiles.  Cluster A cases occurred at households around which where there was 422 

relatively low forest cover, relatively high proportions of cleared land, relatively high 423 

population density, and that were immediately surrounded by fragmented forest cover 424 

compared with cluster B cases. These differences may reflect regional variation in the 425 

history of land use – the conversion of forest on the island of Banggi from the coast inwards, 426 

for example – and therefore the distinction between two sets of drivers of P. knowlesi 427 
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spillover from macaques to humans. This novel approach to identifying transmission 428 

heterogeneities in disease occurrence datasets could be refined through integration with 429 

other sources of data, such as travel histories and human GPS tracking data, and developed 430 

into an effective tool for the surveillance of epidemiological transitions [45]. 431 

 432 

CONCLUSION 433 

 434 

The consideration of multiple spatial scales can add value to analysis of disease occurrence 435 

by delivering more accurate spatial predictions, and identifying the key spatial scales of 436 

transmission. In the case of P. knowlesi, the application of a data mining approach has 437 

teased apart the potentially conflicting influences of forest cover and forest loss [28] on 438 

disease occurrence, identifying the latter as an effect of fragmentation on relatively large 439 

spatial scales and the former as an effect of the proportion of cleared land nearer to 440 

households. This could provide the key to the prediction of disease risk under models of 441 

future land use, and the design of spatially-targeted disease interventions. This new scale-442 

focussed approach could be widely applied to other zoonoses and vector-borne diseases of 443 

public health concern.  444 
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FIGURE & TABLE LEGENDS 453 

 454 

Table 1. The ten scalable landscape variables classified from Landsat satellite imagery used 455 

in the analysis [26]. Grid cells estimated as > 50 % tree crown cover density by were defined 456 

as forested. Perimeter area ratio (P:A) was used as a proxy for fragmentation as variation in 457 

P:A was more evenly distributed across variables than any other measure. 458 

 459 

Figure 1. Relative variable importance (RVI) of all variable-scale combinations from BRT 460 

models of P. knowlesi occurrence (176 predictors). See Table 1 for variable definitions. 461 

Green points represent the whole-study-site, blue points the mainland-only model. Purple 462 

boxes indicate the 16 variable-scale combinations with the highest RVIs, detail of which is 463 

shown in Figure S1a. 464 

 465 

Figure 2. Marginal effect curves of the 16 variable-scale combinations with the highest 466 

relative variable importance across the whole study site (176 predictors) 467 

 468 

Figure 3. The locations of all households included in the study, showing a) occurrence 469 

probability predictions from the whole-study-site model (176 predictors); b) the prediction 470 

error from the same model; and c) the location of the two clusters of case households. 471 
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Table 1. 472 

 473 

Variable name Details Composite year 

Cover (previous year) Proportion of forested grid cells 2014 

Cover P:A (previous year) Perimeter area ratio of forested grid cells 2014 

Cleared (previous year) Proportion of non-forested grid cells 2014 

Cleared P:A (previous year) Perimeter area ratio of non-forested grid cells 2014 

Loss (previous year) Proportion of grid cells that changed from forested to 

non-forested 

2014 

Loss P:A (previous year) Perimeter area ratio of grid cells that changed from 

forested to non-forested  

2014 

Loss (previous 5 years) Proportion of grid cells that changed from forested to 

non-forested 

2010-2014 

Loss P:A (previous 5 years) Perimeter area ratio of grid cells that changed from 

forested to non-forested 

2010-2014 

Gain (all years) Proportion of grid cells that changed from non-forested 

to forested 

2000-2012 

Gain P:A (all years) Perimeter area ratio of grid cells that changed from 

forested to non-forested 

2000-2012 

NDVI Normalised difference vegetation index, calculated from 

composite Landsat image 

2014 

NDVI SD Standard deviation of normalised difference vegetation 

index, calculated from composite Landsat image 

2014 

Elevation Metres above sea level (ASTER Global Digital Elevation 

Model) 

2014 

Slope Maximum rate of change in elevation, calculated from 

ASTER GDEM 

2014 

Population density Population density estimates 2010 
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Aspect Direction of the steepest down slope (in degrees), 

calculated from ASTER DGEM 

2014 

  474 
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