
September 2017 | Volume 4 | Article 1551

ConCeptual analysis
published: 27 September 2017
doi: 10.3389/fvets.2017.00155

Frontiers in Veterinary Science | www.frontiersin.org

Edited by: 
Salome Dürr,  

University of Bern, Switzerland

Reviewed by: 
Thomas Selhorst,  

Bundesinstitut für Risikobewertung, 
Germany  

Kaare Græsbøll,  
Technical University of Denmark, 

Denmark

*Correspondence:
Rebecca Mancy  

rebecca.mancy@glasgow.ac.uk;  
Patrick M. Brock  

paddy.brock@glasgow.ac.uk

Specialty section: 
This article was submitted  
to Veterinary Epidemiology  

and Economics,  
a section of the journal  

Frontiers in Veterinary Science

Received: 16 January 2017
Accepted: 06 September 2017
Published: 27 September 2017

Citation: 
Mancy R, Brock PM and Kao RR 
(2017) An Integrated Framework  

for Process-Driven Model 
Construction in Disease Ecology  

and  Animal Health.  
Front. Vet. Sci. 4:155.  

doi: 10.3389/fvets.2017.00155

an integrated Framework  
for process-Driven Model  
Construction in Disease  
ecology and animal Health
Rebecca Mancy1,2*, Patrick M. Brock1,2* and Rowland R. Kao1,2

1 College of Veterinary, Medical and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, 
University of Glasgow, Glasgow, United Kingdom, 2 Boyd Orr Centre for Population and Ecosystem Health,  
University of Glasgow, Glasgow, United Kingdom

Process models that focus on explicitly representing biological mechanisms are increas-
ingly important in disease ecology and animal health research. However, the large 
number of process modelling approaches makes it difficult to decide which is most 
appropriate for a given disease system and research question. Here, we discuss different 
motivations for using process models and present an integrated conceptual analysis 
that can be used to guide the construction of infectious disease process models and 
comparisons between them. Our presentation complements existing work by clarifying 
the major differences between modelling approaches and their relationship with the 
biological characteristics of the epidemiological system. We first discuss distinct motiva-
tions for using process models in epidemiological research, identifying the key steps in 
model design and use associated with each. We then present a conceptual framework 
for guiding model construction and comparison, organised according to key aspects 
of epidemiological systems. Specifically, we discuss the number and type of disease 
states, whether to focus on individual hosts (e.g., cows) or groups of hosts (e.g., herds 
or farms), how space or host connectivity affect disease transmission, whether demo-
graphic and epidemiological processes are periodic or can occur at any time, and the 
extent to which stochasticity is important. We use foot-and-mouth disease and bovine 
tuberculosis in cattle to illustrate our discussion and support explanations of cases in 
which different models are used to address similar problems. The framework should 
help those constructing models to structure their approach to modelling decisions and 
facilitate comparisons between models in the literature.

Keywords: process models, modelling, model construction, epidemiology, infectious disease, disease ecology, 
foot-and-mouth disease, bovine tuberculosis

BaCKGRounD

The use of models is becoming increasingly popular for understanding the biological processes that 
drive the host-to-host spread and within-host progression of infectious diseases, for both theoretical 
and applied problems. Key epidemiological processes include transmission arising from contact 
between infectious and susceptible hosts, disease progression within hosts (e.g., onset of symptoms, 
recovery), and interventions such as vaccination or treatment. These processes are dynamic, and this 
time dimension can be captured through changes in the epidemiological state of individuals over 
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time. Models in which these processes are represented explicitly, 
often referred to as mechanistic or process models,1 are increasingly 
common in disease ecology, including in veterinary epidemiology.

The explicit incorporation of biological mechanism makes 
process models ideal for studying systems in which population-
level effects (such as disease outbreaks) arise from individual-level 
processes in ways that are difficult to anticipate (such as details 
of how infectious individuals today feed into generating new 
infections tomorrow) (1). By changing model inputs to simulate 
interventions, we can also use them to analyse the effects of poli-
cies that cannot be tested in the real world because doing so would 
be infeasible due to time or resource constraints or because such 
experiments would be ethically undesirable. Such effects would 
be difficult or impossible to investigate using standard statistical 
frameworks.

A wide range of options exists for constructing process 
models. Early epidemiological process models typically took the 
form of differential equation models representing susceptible-
infectious-susceptible (SIS) or susceptible-infectious-removed 
(SIR) disease dynamics. However, increasingly, researchers are 
using models that incorporate higher levels of biological detail. 
One approach is to use agent-based models (ABMs; also referred 
to as individual-based models) in which each host is modelled 
explicitly and its state (i.e., its disease state plus all relevant 
epidemiological characteristics) progresses according to a set 
of rules. These rules can be simple, but can and often do incor-
porate greater complexity. Many more types of process model 
exist, including partial differential equation models and cellular 
automata. This diversity makes it challenging to make defensible 
decisions when developing new models, and complicates the 
task of elucidating any inconsistencies between studies, assessing 
the weight of the evidence for particular claims, and identifying 
research gaps. However, most overviews focus on describing 
technical aspects of each type and include only limited discussion 
of their relationship with biology, while original research articles 
typically compare only a small number of model types.

Here, we clarify the relationship between process modelling 
approaches both in relation to high-level motivations for their 
use and to lower-level decisions about the characteristics of a par-
ticular model. We describe five distinct motivations, identifying 
the key steps in model design and uses associated with each and 
present a framework that forms the conceptual basis for making 
modelling decisions, considering the constraints imposed by the 
epidemiological system, the available data, relevant knowledge 
and expertise, and the questions of interest. Our approach is 
explanatory rather than prescriptive, as the implications of 

1 The relationship between model and biological mechanism differs between 
process models and statistical approaches based on linear models, traditionally 
the mainstay of research and education in biology. Although these statistical 
approaches are often guided by mechanistic theory and employed with the aim 
of understanding biological mechanisms, the mechanisms themselves are not 
modelled directly and are instead inferred from associations with explanatory and 
response variables. In contrast, process models incorporate processes explicitly 
based on biological understanding, potentially in the absence of detailed data on 
every aspect of the modelled system. They can be thought of as simplified “model 
worlds” in which key epidemiological processes unfold over time, analogously to 
their progression in the real world.

modelling decisions are highly dependent on context. We antici-
pate that this analysis will be most valuable for researchers who 
are relatively new to process modelling, but believe it has broader 
value by providing an organisational structure for comparing and 
contrasting modelling approaches.

FRoM systeM to MoDel

A major preoccupation when choosing a modelling approach is 
that it should, in some sense, be “correct.” Although Box’s (2) claim 
that “all models are wrong but some are useful” has become some-
thing of a mantra, its practical implications remain a justifiable 
concern. Nearly a century earlier, Claude Bernard (3, 4) had noted 
that, like models, scientific theories are always “wrong” insofar as 
they are “only partial and provisional truths,” but had emphasised 
their necessary role in science as “steps on which we rest, so as 
to go on with investigation.” In evaluating models, Odenbaugh 
(5) argues for a shift of focus away from model “truth” towards 
the appropriateness of particular modelling “idealisations” (sim-
plifications or abstractions), which should be considered in the 
context of the biological system to which we apply the model and 
the questions it helps us answer. Below, we discuss the application 
of these principles to epidemiological modelling.

To provide meaningful context, we discuss model construc-
tion decisions with reference to two illustrative2 disease systems 
in veterinary epidemiology involving cattle: foot-and-mouth 
disease (FMD; caused by FMD virus) and bovine tuberculosis 
(bTB; caused by Mycobacterium bovis). To keep the focus on the 
underlying concepts and avoid introducing multiple epidemio-
logical systems, we limit practical examples discussed to those 
provided by modelling work on these two diseases. These two 
high profile pathogens have important animal health implica-
tions and are associated with a considerable body of research 
using process models, much of which has focused on recent UK 
epidemics: a major outbreak of FMD occurred in 2001 and was 
controlled by large-scale intervention (6), while bTB remains 
endemic in the UK (7). In thinking about potential influences 
of the epidemiology of bTB and FMD in cattle, we observe 
that: different numbers of cows are kept on farms of variable 
size; cows have fixed attributes (e.g., breed) and changing states  
(e.g., age); and there can be variation in the environment at, 
around, and between farms. We note that cattle come into contact 
with one another through activities such as grazing on the same 
or neighbouring pastureland, and are moved between farms as 
part of trade, slaughter, and breeding activities. These factors can 
affect epidemiological outcomes and it is important to consider 
whether and how to model them. For example, in an ABM, we 
would represent cattle hosts as distinct agents. The attributes, 
states, and movement in continuous space of these individuals 
could be simulated and tracked through time. The model would 
be initiated with a population of cattle and seeded with infection. 
When the model was run, the initial population would be subject 
to processes such as aging, movement, infection, and recovery. 

2 Despite this restriction, much of the conceptual ground covered in this article 
applies to any biological discipline in which process models are used as research 
tools (e.g., ecology). We return to this point in the Section “Discussion.”
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taBle 1 | Five categories of motivations for modelling, illustrative prompt questions, and focus during model construction.

Motivations for modelling illustrative prompt questions or statements  
and references

Focus during model 
construction

Mapping and formalising 
theory—providing 
conceptual frameworks

Modelling helps provide a conceptual framework 
(for self or others)

What are the key entities and processes required to 
model bTB and how might we formulate them in the 
most conceptually useful way?

Conceptual clarity of key 
entities and processes and 
formalisation of these

Begin with informal understanding or verbal 
theory; obtain a precise formal representation 
of the theory (a full model) or of concepts and 
subcomponents of it

Are there similar concepts in associated areas that 
could apply (e.g., how does reproductive potential 
relate to R0)? (9)

Exploring theory—
exploring possibilities

A model formalising theory is used to constrain 
relationships between entities so that system 
behaviours can be explored

Is infection invasion success dependent on spatial 
clustering? (10)

Accurate representation of 
relevant aspects of the theory 
in the model

Begin with a model that formalises theory; 
obtain a set of possible behaviours given those 
processes

What is the probability of bTB persisting in cattle 
herds of different sizes? (11)

No explicit use of data is 
required

Building theory—
generating hypotheses 
and explanations

The structure of the formalised model focuses our 
attention on particular processes and parameters, 
changes to which constitute testable hypotheses

Following the 10-year randomised badger culling 
trial, bTB incidence in cattle decreased in the badger 
culling area, but increased in adjoining areas (12)

Observing the way structures 
and parameters suggest model 
reformulations

Begin with an observation or data; obtain precise 
hypotheses. NB: theory building often conducted 
iteratively with theory testing (below)

The 1967–1968 UK foot-and-mouth disease (FMD) 
epidemic was characterised by rapid early spread 
followed by slower later spread (13)

Testing theory—
identifying mechanisms

To generate empirically relevant and measurable 
predictions, for the purpose of falsification

Does the incorporation of transmission heterogeneity 
allow us to better explain the data? (14)

Incorporation of mechanisms 
into a model in ways that 
allow us to establish whether 
observed phenomena can 
be reproduced; structural 
equivalence between data  
and model outputs

Begin with a model that encapsulates a theory; 
obtain predictions that can be compared with 
data to help pinpoint incorrect mechanisms

Applying theory—
generating accurate 
predictions

To make forecasts, predict responses under 
intervention, and examine counterfactual 
scenarios

How might FMD epidemiological dynamics have 
differed under alternative culling scenarios during the 
2001 FMD outbreak? (15)

Ensuring key mechanisms 
are replicated as closely 
as required to accurately 
reproduce real-world 
phenomena and data

Begin with a model that is assumed to be true; 
obtain hindcasts/forecasts, and predictions 
relating to counterfactuals and other systems

What difference might incursion location and speed 
of deployment make to the effectiveness of FMD 
reactive ring vaccination? (16)
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Cattle movement within farms could be modelled as a random 
process, while between-farm movement could be informed by 
trade volume data, and transmission between hosts determined 
by contact between susceptible and infectious individuals.  
As time progressed, the state of every host would be updated 
following the specified process rules.

Because the structure of detailed ABMs maps closely to our 
understanding of the real world, they often appear intuitive. 
However, they are time-consuming to construct because they 
involve making many decisions about the processes to model. 
Many alternatives exist, yet selection can be challenging. The 
remainder of this paper consists of two main sections: in the first, 
we distinguish between five motivations for using process models 
and the particular aspects of model construction to focus on for 
each; in the second, we provide an organisational structure for 
navigating modelling decisions. The first of these sections is more 
philosophical and the second more practically oriented; they can 
be read together or as stand-alone sections.

tHe Questions We WisH to ansWeR

The appropriateness of a particular model depends on both 
our precise research question and our motivations for using a 

process model to help answer it. Clarifying our motivations for 
using a model and the steps required to use it in this way helps 
guide modelling decisions towards the aspects of the model that 
are most critical for the way it will be used and help us determine 
the appropriate level of complexity or output accuracy, some-
thing we return to in Section “Applying the Model Construction 
Approach.” Irrespectively of whether the focus is on highly 
specific or abstract systems, one or several motivations can apply 
in each piece of work. These are not always made explicit in the 
text of an article, but distinguishing between them can help us 
to understand the role of modelling within a piece of work and, 
therefore, evaluate its appropriateness. In this section, we pre-
sent five motivations for using process models in epidemiology.3 
In Table 1, we describe start and end points for each motiva-
tion, provide illustrative questions or observations associated 

3 Although motivations for modelling have been classified in different ways, see, 
e.g., Ref. (8), we draw on the five categories described by Odenbaugh (5). We build 
on these by clarifying distinctions between them, adapting them to the context 
of epidemiological process modelling, and clearly identifying the steps in model 
construction and use associated with each. We rename certain categories for con-
ceptual clarity: Odenbaugh refers to Mapping and formalising theory as “providing 
conceptual frameworks,” to Building theory as “generating explanations,” and to a 
category similar to Testing theory as “investigating more complex systems.”
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with each (with references, where available for bTB/FMD and 
otherwise for more abstract disease systems), and identify the 
primary focus during model construction. In the main text, we 
provide an overview of the associated steps involved.

Mapping and Formalising theory
When our initial thinking about an epidemiological system is 
relatively imprecise, the process of formalising our ideas helps 
improve conceptual clarity and can even allow us to develop new 
epidemiological concepts or refine existing ones. By “mapping 
and formalising theory,” we refer to the process by which we go 
from our (typically informal) understanding of an epidemiologi-
cal system derived from verbal theory or experience, to a formal 
model that can be written down (e.g., using mathematical symbols 
or computer code). Formal and symbolic models provide con-
ceptual frameworks that allow us to reason about more complex 
systems than would be possible using purely verbal arguments. 
Odenbaugh (5) points out that “model building is first and 
foremost a strategy for coping with an extraordinarily complex 
world,” making this an important motivation for model construc-
tion. Heesterbeek (9) describes how formalising theory led to the 
development of the basic reproductive number (sometimes called 
“rate” or “ratio”), R0, that has become one of the most important 
concepts in contemporary infectious disease epidemiology.  
R0 is now widely used independently of the original models  
(or indeed of any model at all), as a communication tool, to raise 
and formulate new questions about epidemiological systems and 
how to model them.

Although the benefits of increased conceptual precision that 
arise from formalisation are often considered a side effect of 
model development (and rarely reported in research articles), for-
malising theory can be a deliberate strategy to help us understand 
complex systems. In this case, during model construction, we 
focus on questions about how best to represent the key processes 
in our system. These questions can relate to direct analysis of 
our biological system; alternatively, we may seek inspiration in 
similar concepts from other domains, attempting to identify the 
link between the two. If a mapping can be found, then concepts, 
insights, and results can be transferred—for example, identifying 
parallels with network models developed in the statistical physics 
literature has been particularly fruitful in epidemiology, e.g., Ref. 
(17)—but even failed attempts would ideally be reported because 
they help us identify inconsistencies, potentially leading to the 
development of new concepts.

exploring theory
Once a theory has been incorporated into a formal model, its 
implications can be explored. An epidemiological model con-
strains the range of outcomes that can arise, so it can be used to 
deduce or simulate the range of possible system behaviours or the 
probability that those behaviours arise. This might be achieved 
in different ways, including mathematical deduction that allows 
us to develop and prove theorems and experimental approaches 
based on simulation. For example, process models could be 
used to explore the range of potential long-run behaviours of 
epidemiological systems (e.g., whether endemicity can arise), or 
to establish whether chaotic behaviour is possible (5).

When exploring theory, we begin with a model that represents 
that theory and use logical reasoning, mathematical deduction 
or computational approaches to understand the range of pos-
sible behaviours that can be generated under the assumptions of 
the theory, and potentially their associated probabilities. When 
used to explore theory, neither the model construction nor the 
exploration stage focuses directly on the correspondence between 
model and data, but rather on the correspondence between 
theory and model, to ensure that the implications for theory of 
model findings are clear. The theory under investigation may be 
general and abstract, and correspond to a hypothetical disease, 
or a specific epidemiological system. Exploration does not rely 
on the existence of data; even in the absence of data, it can guide 
epidemiological science by suggesting behaviours to look for in 
empirical work and their expected frequencies, and by helping to 
determine sample sizes (18).

Building theory
Theory building consists of generating possible explanations for 
empirical observations. When we use models to help us with 
this task, our motivation is to help us formulate hypotheses by 
suggesting potential causal mechanisms that explain an observed 
phenomenon. The phenomenon to explain could take the form of 
a general trend or pattern observed in a range of epidemiological 
systems, or an observation arising from a specific dataset. For 
example, following the 10-year randomised badger culling trial, 
bTB incidence in cattle decreased in the badger culling area, 
but increased in adjoining areas. This observation was initially 
counter-intuitive and theory building was required to explain 
how it arose (12).

When constructing models to assist us in theory building, 
our starting point is an unexplained observation. Our primary 
focus in their construction is on the way in which structures 
and parameters, usually from an existing model, might suggest 
reformulations or extensions that constitute hypotheses. These 
hypotheses can be based on mechanisms drawn from general 
theory (e.g., about different kinds of host contact structure) or 
system-specific mechanisms, such as those based on experiential 
knowledge of the system (e.g., differences between England and 
Scotland in cattle-trading behaviour). These mechanisms need 
to be incorporated into the model before proceeding with theory 
testing (see Testing Theory) when the model will be used to 
characterise their effect and make comparisons with empirical 
observations.

testing theory
Theory testing refers to attempts to establish whether a theory 
provides a good explanation for empirical observations or data. 
Our motivation for using models for this purpose is their abil-
ity to generate falsifiable predictions that we can compare with 
existing data or observations or employ to guide data collection 
protocols or experiments. Although verbal theory is sometimes 
sufficient to make falsifiable predictions, a model can be valuable 
if we want to generate quantitative predictions or if the system 
is too complex to reason about otherwise. When using a model 
to test theory, no initial claim is made about the truth status 
of the model, and we often acknowledge that it is idealised or 
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incomplete. Model predictions used to test theory are not fore-
casts; rather, the intention is that they are empirically falsifiable. 
Indeed, when models fail to make accurate predictions, they 
often fail for reasons that are very informative about the systems 
under study (5).

When testing theory, it is important to incorporate hypoth-
esised mechanisms into the model in a way that allows us to 
establish whether it produces an observed real-world phenom-
enon. During model construction, we have a dual focus on 
accurately incorporating the mechanism and on devising ways to 
characterise its effect in a form that can be compared with data 
or observations. Comparisons with observations can be more or 
less formal depending on whether the model is highly idealised 
or complex, whether our predictions are qualitative of quantita-
tive, and the form and extent of real-world observations or data. 
For example, formal model fitting and parameter estimation rely 
on the availability of data and a model at an appropriate level 
of complexity for the methods employed.4 Simple or complex 
models can be used to pinpoint errors in scientific hypotheses by 
using them to generate several predictions and establishing which 
are more (or less) compatible with observations. For example, in 
the work by Donnelly et al. (12) described in the section above, 
once explanations had been suggested through theory building, 
model predictions were used to narrow the space of possibilities. 
Ultimately, these authors concluded the unexpected pattern of 
disease incidence following culling was due to the perturbation 
of badger social structure and consequent movement. Additional 
uses of models to test theory include the use of a “null model” 
to serve as a baseline (or “straw man”) and sensitivity analysis to 
gauge the importance of model assumptions.

applying theory
By applying theory, we refer to the use of models to forecast 
potential future events, or to predict events that might have 
occurred or could occur under circumstances or interventions 
that differ from those observed (sometimes referred to as “coun-
terfactuals”). For example, Porphyre et al. (16) used a model to 
investigate the possible effects of a vaccination intervention in 
the event of a hypothetical introduction of FMD into Scotland, 
and Ferguson et  al. (15) used a model to compare 2001 FMD 
outcomes under the implemented culling strategy with those that 
might have occurred without the intervention.

When motivated by the application of theory, model construc-
tion focuses on ensuring that key mechanisms are modelled as 
accurately as possible. Predictions are not intended to be falsified: 
they should be as accurate as possible so that we can compare 
actual and counterfactual scenarios. Steps in model use include 
careful construction, verification, and validation, subsequent 
use to conduct “experiments” under different conditions, and 
the examination of any effect on epidemiological outcomes (20). 
This use capitalises on the power of process models: to the extent 
that the model embodies real-world mechanisms, changing the 
conditions in which those mechanisms play out allows us to 

4 A full discussion of formal model fitting and parameter estimation is beyond 
the scope of this paper, but this is an area of particularly active development, see,  
e.g., discussion in Ref. (19).

observe, characterise, and quantify the effects of these changes. 
Using models in this way requires a solid understanding of the 
processes acting in the epidemiological system for at least two 
reasons. First, empirical investigation of counterfactual scenarios 
is usually infeasible or impossible, e.g., in the case of historical 
counterfactuals, but also experimental testing of a range of policy 
options (also making falsification of model results impossible). 
Second, if models are used to inform policy decisions, incorrect 
predictions can be harmful, giving model use an important ethi-
cal dimension.

MoDel ConstRuCtion DeCisions

Establishing our motivations for using process models informs 
lower-level modelling decisions by helping us focus on how to 
select and represent the parts of the system to best answer the 
research question. Our key decisions centre on which aspects of 
reality to simplify and in which ways, taking our knowledge of 
the epidemiological system and research questions into account. 
As Grassly and Fraser (18) point out, “unnecessary complexity 
can obscure fundamental results and is almost as undesirable as 
over-simplification,” thus “model choice—the process of decid-
ing which model complexities are necessary—is a central part of 
mathematical modelling of infectious diseases.” In this section, 
we identify and discuss five important modelling decisions and 
associated options.

We begin with three key decisions that apply to all infectious 
disease models in epidemiology: whether we want to track the 
infection status of individuals or groups; how to model the con-
nectivity of hosts that determines transmission between them; 
and which disease states to model. These decisions relate to how 
we choose to represent the fundamental elements of infectious 
disease epidemiology: the disease states of the host population 
and the connections supporting transmission between them. 
The first two decisions determine the epidemiological states that 
we wish to track in the model, shown by the colours and rows 
of Figure 1, while different forms of connectivity are shown in 
the columns. Figure  1 demonstrates how their combinations 
can result in different model structures, while Table 2 provides 
descriptions of model types that include key search terms to aid 
with literature searching. We then describe two further decisions 
that relate to how we choose to implement changes of epide-
miological state over time: whether these are modelled as taking 
place continuously or in discrete time; and whether and how to 
incorporate randomness into the processes that we model.

How to Model Hosts
Our first decision, captured by the rows in Figure  1, concerns 
whether we want to track the infection status of individuals  
(e.g., cows) or of groups (e.g., herds). In our earlier ABM of disease 
spread in UK cattle (Figure 1, 1a), each cow is modelled explic-
itly and tracked over time, taking up its own space in computer 
memory. This allows us to track both the total number of infected 
animals and the fate of individual cows; however, as the number of 
cows increases, so too does the computational cost of simulation 
and potentially the complexity of outputs, making them difficult 
to interpret. As a result, detailed ABMs are rarely used to model 
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disease spread across a system as large as the UK and are more 
frequently used on local scales. For example, Biek et al. (24) used 
an ABM (Figure 1, 1a) to explore the correspondence between 
likely transmission pathways identified through epidemiological 
modelling and data on phylogenetic relationships in the bacterial 
population.

When detailed ABMs are too computationally intensive or 
complex to analyse, we might choose to group individuals. For 
example, it is sometimes preferable to focus on groups, such as 
herds or farms, or groups defined by age, sex, or spatial distribution;  
in Figure 1, the difference between row one and the remaining 
rows represents this grouping distinction. Whether grouping 
is an appropriate decision depends on both the system and the 
research question. For example, it makes sense when individuals 
fall into relatively clear groups that have important implications 
for their epidemiology, or if we have better information about 
group-level than individual-level epidemiological processes.

In rows 2, 3, and 4, we track groups rather than individuals, 
and the distinctions between these rows relate to the kind of 
information we choose to track about group infection status. 

There are several main alternatives: we could track the number of 
individuals displaying each infection status (row 2), the presence 
(or absence) of hosts in each state (row 3), or the density or propor-
tion of hosts in each state (row 4). Models that track the number 
or proportion of hosts in one of three disease states (susceptible, 
infectious, and removed) may be familiar as simple SIR-type trans-
mission models based on ordinary differential equations (ODEs).  
A further simplification consists of tracking only the presence 
(and absence) of infection in groups of hosts.

In addition to increased analytic and computational trac-
tability, summarising the infection status of a group of hosts 
sometimes better represents the scale at which data are available, 
or at which transmission processes are understood. However, 
one drawback of modelling groups rather than individuals is 
that we only know that at least one animal is infected, losing 
information about which individuals are infected. Grouping also 
forces us to aggregate, so we lose the capacity to study within-
group heterogeneity. Further, if a model tracked the disease 
state of farms (Figure  1, 3a) rather than cows (Figure  1, 1a),  
the influence of individual attributes could no longer be 
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Figure 1 type usual model name/description

4b Uncommon in the animal epidemiology literature

4c Network in which the proportion of animals in each state, 
per network node, is modelled

4d Proportion of animals in each state is modelled for a single 
population. Classic ordinary differential equation (ODE) 
models fit into this category
Reference for FMD (15)

Not all model types are used in the literature on bTB/FMD, and some, therefore, do not 
have a reference within this literature. Note that although much of the literature refers to 
only differential equation models as “compartmental models,” all models referred to in 
this article are compartmental models in the sense that states are discrete (an individual 
can only be one state, e.g., susceptible, exposed, infectious, etc.). Depending on the 
number of states, all could, therefore, be described by reference to the states included, 
so could be referred to as, e.g., susceptible-infectious-susceptible (SIS), susceptible-
infectious-removed, SIR models (those in Figure 1 have only 2 states, so are SI or SIS 
models).

taBle 2 | Typical names used to describe the models shown in Figure 1,  
to assist in literature searches (particularly terms highlighted in italics); 
descriptions of almost all modelling approaches discussed here are provided in 
Ref. (21–23), as well as in the references cited throughout this article.

Figure 1 type usual model name/description

1a Usually referred to as an agent-based model (ABM); 
sometimes an individual-based model (IBM). Typically, IBMs 
are less detailed and have fewer state variables than ABMs
Reference for bTB (24)

1b Usually referred to as a cellular automaton (CA) or 
probabilistic cellular automaton (PCA) if transitions between 
time steps are probabilistic

1c Network model. Note that in the mathematical literature, 
networks are referred to more precisely as graphs 
and many results used in epidemiology use graph 
theory. Approximations to full network models include 
moment closure methods (including so-called pairwise 
approximation models or approximations based on  
triples, etc.)
References for foot-and-mouth disease (FMD) (25, 26)

1d Agent-based or IBM without spatial information (See 1a), 
possibly in the form of a branching process model

2a Sometimes referred to as a metapopulation model or 
patch model, although there is some confusion in the 
literature regarding the distinction between these terms. 
(The confusion focuses on whether to refer to models that 
maintain individuality but of grouped individuals versus 
models that consider only whether a patch is occupied  
or unoccupied, should be referred to as patch models  
or metapopulations. Both are used.)

2b Might be referred to as a CA or PCA (see 1b), but 
where each cell can contain more than one individual. 
Alternatively, might be referred to a gridded metapopulation 
model
References for bTB (25, 27)

2c Network model in which the network connects groups 
(e.g., herds) rather than individuals
Reference for bTB (27)

2d Difference equation model or standard Gillespie simulation 
model (also Gillespie algorithm or Gillespie stochastic 
simulation algorithm) in which counts of hosts in each 
state are integer values. Adaptations include tau-leaping 
approximations

3a Usually referred to as a metapopulation or patch model. 
One example in continuous space is the Spatially Realistic 
Levins Model, in which patches can also have different 
characteristics
Reference for FMD (28)

3b CA or PCA (see 1b), where each cell is considered 
infectious if at least one individual is infectious (see 
relationship between 1b/2b and 3b)

3c Network model in which each group is considered 
infectious if at least one individual is infectious (see 
relationship between 2c and 3c)
For FMD, InterSpread (29, 30) can be used in this way 
when transmission is not solely a function of distance 
between farms

3d Trivial presence–absence model

4a Partial differential equation (PDE) model, reaction-diffusion 
equations
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investigated. Presence-absence and density approaches (rows 
3 and 4 in Figure  1) are usually more appropriate for systems 
in which randomness and individual-level variation are small. 
However, they are more difficult to justify when we are interested 
in modelling processes in which individuality matters. For exam-
ple, they can cause problems when we are interested in studying 
extinction because continuous population densities mean that 
the pathogen population can become arbitrarily small (e.g., less 
than one pathogen present) without going extinct.

The grouping of cattle into herds, each of which is associated 
with a farm, underpins most models of FMD and bTB transmis-
sion in the UK. For example, in the InterSpread modelling frame-
work used during the 2001 FMD outbreak in the UK, researchers 
initialised all UK farms with counts of the number of different 
kinds of livestock recorded during the most recent farm census  
(29, 31), and simulated whether each farm was susceptible or 
infected (the framework is able to capture different distance meas-
ures, so corresponds to Figure 1, 3a and 3c). Similar approaches to 
modelling the spread of bTB within and between farms have been 
implemented, tracking the numbers of animals moving between 
farms, and the number and disease state of animals on each farm, 
with some work using a combination of approaches from row 
2, e.g., Ref. (27), that involves both a tiling and a network, i.e., 
Figure 1, 2b and 2c. In Ref. (28), only the presence or absence of 
infection in groups is tracked (Figure 1, 3a).

How to Model Connectivity
Our third modelling decision, represented by columns in Figure 1, 
relates to how infection passes between individuals or groups of 
hosts. In our original ABM, hosts move in continuous space,5 
and space itself determines host connectivity—for example, 
pathogen transmission might be modelled as occurring when 
agents are sufficiently close to one another (Figure  1, 1a),  

5 When modelling in continuous space, each host has an (x,y) location, in which 
x and y are not restricted to integer values (i.e., can have arbitrarily many decimal 
places).(Continued )

taBle 2 | Continued
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or as a continuous function of distance. Models can also 
represent space as continuous without explicitly repre-
senting individual hosts, e.g., by modelling the location of 
farms in continuous space, with distances between farms 
affecting the spread of infection among them (Figure  1, 2a).  
This is an appropriate approach when our primary interest is 
between-farm transmission and spatial distance is considered a 
good proxy for strength (or probability) of potentially infectious 
contact. A continuous space approach that models the propor-
tion of infected hosts is that of reaction–diffusion models that are 
based on PDEs (Figure 1, 4a).

One alternative to modelling hosts in continuous space is to 
divide the modelled landscape into discrete areas in the form of 
a tiling (often referred to as a grid or lattice), as in the example 
scenarios shown in Figure 1 column b. A tiling can be composed 
of regular shapes such as hexagons or squares (as in Figure 1), 
as is often the case for satellite data; alternatively, it can be 
irregular, as might be the case for administrative jurisdictions. 
Discretisation of space is often used when model outputs will be 
compared with data that are only available in spatially discrete 
form, or when epidemiological interventions are necessarily 
applied over predetermined areas because of administrative 
jurisdiction. Each patch in a tiling can have different charac-
teristics (e.g., host density), making it possible to examine the 
influence of this heterogeneity.

A tiling covers the full space and can, therefore, only be used 
when connectivity can be collapsed to two dimensions (32); how-
ever, often there are also parts of the landscape that we do not need 
to model explicitly. This can occur in the case where hosts aggre-
gate in housing or pastureland, or when non-spatial mechanisms 
such as human-mediated transport or watercourses determine 
transmission. A spatial tiling is a special case of a network that 
takes a lattice form, and a more general network approach can 
be valuable for this kind of problem, modelling farms as nodes 
in a connectivity network, with the strength of the links between 
farm nodes determining the probability of transmission from one 
to another. Link strength could, for example, be determined by 
the shortest distance between farms when travelling by road, or 
by previous trading history between them. This broad category 
of network models is represented by the diagrams in Figure 1, 
2c, 3c, and 4c. The approach is similar to that of metapopulation 
models used in ecology, in which the network connections or dis-
tance influence otherwise independently modelled populations 
that exist in patches.6 This type of model, usually represented in 
the form of a distance- or contact-matrix, was the basis of several 
FMD models in which transmission was modelled using known 
distance between farms, e.g., Ref. (28), making it a model of 
type 3a in Figure 1. Using distances between farms (Figure 1, 
3a) is also a special case of Figure 1, 3c, where these distances 
determine the modelled connection between nodes.

6 The emphasis of heterogeneity in metapopulation models is typically on the 
attributes of patches, and patches are usually thought of as being equally connected 
or connected by distance. In network models, it is more common to assume nodes 
are homogeneous and emphasise different levels or kinds of connectivity between 
them. Nonetheless, this is a question of research tradition and emphasis, and a 
model from one of the two frameworks can be thought of from either perspective.

The final broad category of model approaches to connectivity 
is represented by column d in Figure  1, in which the effects 
of space are not modelled. The most familiar form of disease 
model in which space is implicit is the simplest SI model, 
represented by Figure 1, 4d, in which all modelled individuals 
have the same probability of encountering one another per unit 
time, as if they occupied a theoretical homogenous space and 
mixed randomly within it. This “complete mixing” assumption 
may be appropriate for certain systems (perhaps for water-
borne diseases of fish), but can also be used as a simplification 
when the complexity of other aspects of a model (e.g., number 
of disease states) make a spatially explicit model difficult to 
analyze. Non-spatial models can also be used to track only 
the presence or absence of disease in a system (Figure 1, 3d), 
modelling numbers of individuals (Figure  1, 2d), or keeping 
track of distinct individuals (Figure 1, 1d).

The decision about how to model connectivity is usually 
based on a combination of factors including data availability 
and our understanding of disease processes. For example, for 
the analysis of local culling policies for the 2001 FMD epidemic, 
one difficulty was that individual farms often contained multiple 
parcels of land whereas the data only represented each farm as a 
single spatial point. As a result, many more farms were actually 
contiguous (and thus needed to be subject to culling) than was 
apparent from the available data. However, by grouping farms 
into discrete tiles with neighbouring tiles used to establish 
contiguity and counting the number of infected farms per 
tile (as in Figure 1, 2b), it was possible to mimic the extent of 
culling recorded during the epidemic and, therefore, explore 
counterfactual culling policies (25). In this case, a discretisation 
of space allowed the simulation of more realistic interventions. 
Modelling in discrete space can also be used as a tool for detect-
ing the spatial scales of key processes driving transmission,  
e.g., Ref. (33) for a general epidemiological example.  
Figure 1, 1c  also highlights that it is possible to model the con-
nections between individuals as a network, as in social network 
analysis models or models of sexually transmitted disease 
spread, or between farms via the movement of livestock (26).

How to Model states
Once we have decided on a level of grouping of hosts and how 
infection passes between them, we need to decide what states, 
captured by colours and spatial locations and other attributes 
in Figure  1, each individual animal or group can take. In the 
simplest model, we might decide that each host (individual or 
group) can have only two states, susceptible or infectious. Classic 
SI models based on differential equations are models of this type. 
However, we might decide to include additional states such as 
spatial location or age, or additional disease states that capture 
incubating or immune status, or changes in the level of infectivity 
during different stages of infection.7 In Figure 1, colours are used 
to illustrate disease state, with blue and red used to represent 
susceptible and infected cows or patches; in 1a, differences in 

7 States could be either discrete (as in compartmental models) or continuous  
(e.g., antibody titer).
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shading of the markings on the head of each cow emphasise that 
individuals have additional distinct attributes and states, while in 
columns a and b, the position of crosses, points, and square cells 
denote spatial location.

As we increase the number of attributes and states that we 
model, the complexity of the model grows quickly. For example, 
if we model space using patches/nodes or a grid, the full system 
state at any given time consists of the combination of the states 
of all the patches. For example, even for the simple presence–
absence model in Figure 1, 3a,  although each patch has only two 
states, the whole system has 23 = 8 states. By using “R” to represent 
red and “B” for blue, these states are: (R,R,R), (R,R,B), (R,B,R), 
(B,R,R), (R,B,B), (B,R,B), (B,B,R), and (B,B,B). Adding a single 
patch leads to 24 = 16 system states. As the numbers of patches 
or animals and states grow, the number of possible system states 
grows very quickly. Although we do not expect all possible system 
states to occur, even if only a small proportion of these arise dur-
ing the dynamic process captured by the model, this number can 
be very large. As a result, it is often helpful to track instead a 
one-dimensional variable, such as the number of infectious hosts 
or groups in the system.

How to Model time
The order of events—the sequence in which farms become 
infected—and whether two events occur close together in time 
or far apart, can have important effects on disease dynamics, so 
determining how to model time forms an important considera-
tion in the construction of process models.

In determining how to model the progress of time, it is 
helpful to distinguish between epidemiological processes that 
can occur at any time—i.e., in continuous time—and those in 
discrete time. Modelling approaches have been developed that 
respect this distinction between continuous and discrete time 
and are named accordingly. Biological processes take place in 
continuous time in the sense that the interval between events 
can be arbitrarily small, so in some senses, discrete time repre-
sentations are always an approximation, with a key difference 
being that when time steps are sufficiently long in discrete 
time models, more than one event can occur at the same time. 
Nonetheless, if events are highly clustered in time, for events 
within the same time window, it may not matter—and it may not 
even be possible to decide—which happened first. For example, 
within the period of a day, it may not be important which cow 
became infectious first, especially if cows only come into contact 
during milking. In a more extreme scenario, the host population 
might be periodically eliminated (e.g., harvested crops), or there 
could be periods of the year during which new infections can-
not arise (e.g., if vectors overwinter in diapause). In these cases, 
we have a biologically driven reason to model in discrete time. 
Discrete time representations can also be used as an approxima-
tion to continuous time processes, perhaps because researchers 
are more comfortable with the modelling techniques or in cases 
where discrete time approximations are less computationally 
expensive.

When discrete time approaches are used, it is important to 
choose an appropriate time step length. When discrete time 
modelling has a biological justification, the length of the interval 

should be chosen so that it can reasonably be assumed that the 
order of events within the same time step is unimportant. This 
means that we need to focus on the fastest process in the system, 
typically transmission dynamics rather than host demographic 
processes. When discrete time is used as an approximation, time 
needs to advance in very short steps; however, it is usually very 
difficult to decide how short the interval needs to be to avoid 
influencing model predictions. For example, Mancy et  al. (34) 
showed that the outcome of spatial competition between two 
species differed between a continuous and a discrete time model, 
even for very short time steps. It is, thus, important to report 
whether a discrete or continuous time model is employed along 
with the rationale for the decisions made.8

In general, the decision about whether to model in continuous 
or discrete time is driven primarily by the biology of the system 
under study and associated research questions, rather than our 
motivations for modelling. Although when testing theory, time 
is often modelled discretely to support comparisons with data, 
if real-world processes are continuous, it is often preferable to 
model in continuous time and then aggregate model output to 
correspond to data intervals. Similarly, when applying theory, 
the timing of interventions should be modelled according to 
the feasibility of implementing these interventions in the real 
world. Examples of continuous time modelling paradigms are 
differential equations (both ordinary and PDEs) and simulation 
approaches such as the Gillespie algorithm (modelling discrete 
events in continuous time, Figure 2, column a),9 whereas dis-
crete time approaches include difference equations and cellular 
automata. The symbolic form of these is shown in Figure  2 
(column b).

Whether and How to Model stochasticity
The final decision we discuss is whether to model epidemiological 
processes as deterministic or stochastic. Although familiar, this 
distinction bears repeating as it relates to differences in both the 
relationship between models and the real world, and to the steps 
required for their use. Deterministic models are those in which 
outcomes are entirely predictable based on the parameter values; 
in contrast, the output of stochastic models is not fully dependent 
on parameter values so cannot be predicted precisely. This means 
that deterministic models only need to be solved once for each 
set of parameter values, whereas stochastic models need to be run 
multiple times to gain good insight into the “average” or “typical” 
outcome. Running a model multiple times creates an operational 
overhead; however, the variation generated allows us to exploit 
information on the distribution of outcomes in real world data 
in their validation.

The first issue that arises is whether deterministic or stochas-
tic models provide a better representation of the system we are 

8 It is not uncommon to read articles in which this information is not provided. 
One tip to determine whether a model represents time as continuous as discrete is 
to search for the keyword “time step” or “timestep” in the text and figure captions.
9 Although, in the Gillespie algorithm, time between events is “skipped over” such 
that simulation time progresses in a step-wise manner, it is nonetheless a con-
tinuous time approach because each step can have arbitrarily many decimal places  
(i.e., is a real number, to the limits of computational accuracy).
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modelling. The discussion about whether the universe is truly 
deterministic or stochastic is an unresolved debate in the phi-
losophy of science literature; however, because epidemiological 
systems are never fully known, it is often preferable to use sto-
chastic models. Bolker (35) partitions stochasticity into three 
sources of random variability: process-related stochasticity in 
the form of either endogenous stochasticity or environmental 
stochasticity and measurement error. Endogenous stochasticity10  
is variability which is inherent to the system itself and that 
would occur between realisations even under identical envi-
ronmental (or experimental) conditions, including variability 
in host demographic processes and the number of secondary 
cases. Environmental stochasticity refers to the unpredictability 
of exogenous processes (i.e., those outside of the system of 
interest and that occur independently of it), such as extreme 
weather events that affect host demography or disease dynam-
ics. Depending on where we locate the limit between our system 

10 Bolker refers to endogenous stochasticity as demographic stochasticity; however, 
the term is awkward in infectious disease epidemiology in which both host and 
pathogen demographic processes are important.

and the environment, the same source of stochasticity might be 
thought of as endogenous or exogenous: for example, weather 
and climate stochasticity are usually treated as environmental; 
in contrast, stochasticity in individual farmer responses to 
policy interventions might be viewed as exogenous or as part 
of the system. In contrast to process stochasticity that exists 
regardless of whether we study the system, measurement error 
arises in conjunction with our role as scientists and refers to 
variability in data due to difficulties of measurement. Within 
this category, Clark and Bjørnstad (36) refer to measurement 
inaccuracy, missing data points, lags between the biological 
process of interest and measurable outcomes, and “hidden” 
system states that are not amenable to measurement; methods 
for dealing with measurement error are discussed in Calder 
et al. (37).

Starting from deterministic models in the form of, for 
example, ODEs or difference equations (Figure 2, a1, b1), there 
are several ways in which process stochasticity can be incorpo-
rated into epidemiological models. Two common approaches 
are the inclusion of a stochastic error term into an otherwise 
deterministic framework (Figure 2, a2) and the use of a fully sto-
chastic process model (e.g., a Markov model) (Figure 2, a3, b2).  
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In the first, epidemiological processes are modelled as having 
a deterministic component, with variability around this deter-
ministic trajectory modelled as “noise.” In a fully stochastic 
approach, the state of the system depends on previous states and 
a random component, with transitions occurring according to 
probabilities often represented in matrix form. If we decide to 
ignore states further back in time, we can employ results from 
mathematical Markov process theory, including those that 
facilitate simulation approaches using the Gillespie algorithm, 
a continuous time, event-driven approach (38, 39). In contrast 
to ODE models, advantages of simulating Markov processes  
(e.g., using the Gillespie algorithm or discrete-time equivalents) 
are that negative population counts and partial individuals are 
not possible and it is possible to identify a precise extinction 
time. For the Gillespie algorithm, there is a clear relationship 
with deterministic ODE approaches, including R0 calcula-
tions, meaning that results from these simpler models can be 
compared with simulation outcomes. The Gillespie algorithm 
assumes exponentially distributed waiting times, which are often 
unrealistic (40), so it may be necessary to combine exponential 
distributions via the so-called “method of stages” (41), or associ-
ate the approach with alternative simulation algorithms for to 
achieve other distributions, e.g., for infectious periods.

In addition to determining the type of model to use, the deci-
sion between deterministic and stochastic models also affects the 
steps involved in model use. “Solving” a process model can refer 
to obtaining either long-run outcomes, often in the form of an 
equilibrium solution, or to obtaining the time path of the system 
states. For each set of parameters and initial conditions, solving 
a deterministic process model leads to a single time path. For 
simple deterministic systems, it is sometimes possible to solve 
for time paths or equilibria analytically (i.e., symbolically). For 
more complex systems, numerical methods that allow us to 
obtain approximate solutions are often available (e.g., numerical 
methods for solving differential equations such as Runge–Kutta 
and variants thereof).11 This means that we only require one 
solution of the model per parameter set (and initialisation, where 
appropriate). In contrast, stochastic models lead to a set of solu-
tions and associated probabilities. For some types of stochastic 
models, numerical methods are available to obtain certain gen-
eral results (e.g., the stationary distribution of a Markov chain 
can be obtained from eigenvector relations, for which numerical 
methods are available), and some more complex models can be 
solved in this way if we are interested only in summary statistics 
such as means. However, in many cases, it is necessary to use 
stochastic simulation in which system states are computed as 
a function of previous states and transition probabilities, and 
for each initialisation and parameter set, multiple solutions are 
obtained. We are, therefore, required to simulate multiple times 

11 Although numerical solutions are often referred to as simulations, it is useful to 
distinguish between the two. A simulation is defined as the imitation of a process 
over time. In a stochastic simulation such as an ABM/IBM, the computer simulation 
is an imitation of real-world processes, but is the actual playing out of the model. In 
contrast, a numerical algorithm used to solve a differential equation model imitates 
the differential equation; strictly speaking it is, therefore, not a simulation of the 
real world processes (although it is a simulation of the differential equation model).

for each parameter set and initialisation and compute summary 
statistics on model output.

When deciding whether and how to incorporate different 
sources of stochasticity into process models, it is helpful to 
consider the system, the questions we want to answer and our 
motivations for using a model. In relation to the system, a com-
monly recognised point is that stochasticity causing random 
population size fluctuations has stronger effects in smaller sys-
tems. In disease ecology, stochasticity is more important when 
the host population is small, but also at the very beginning and 
end of an outbreak when there are fewest infectious agents (18). 
Stochasticity is also important for certain questions: for exam-
ple, process stochasticity is important when studying pathogen 
elimination (39), not just because pathogen populations are 
small close to elimination but also because populations can 
go extinct through random processes even when their deter-
ministic equivalent persists. Further, incorporating existing 
knowledge about stochasticity in epidemiological processes can 
be intrinsic to certain questions: for example, O’Hare et al. (14) 
used knowledge of variability in the number of secondary cases 
to guide model choice decisions when investigating the role of 
“superspreaders.” The type of answer required can also drive 
decisions. For example, mathematical tools for deterministic 
models are also generally more developed, meaning that it is 
possible to obtain analytic expressions or precise numerical 
estimates of quantities of interest, and is easier to examine 
threshold behaviours. In such cases, choosing between deter-
ministic and stochastic models is, therefore, driven primarily 
by our questions, rather than our motivations. Nonetheless, 
especially when exploring theory, we may decide to ignore sto-
chasticity altogether or include only one form at a time, because 
this allows us to isolate the effect of each in conjunction with 
parameter changes. Incorporating measurement error is impor-
tant when the motivation for using models involves using or 
explaining data or observations affected by measurement error; 
when using models for exploring theory, it can often be ignored.

applyinG tHe MoDel ConstRuCtion 
appRoaCH

To apply the approach outlined here, we would begin by iden-
tifying our motivations for model use to guide us towards the 
aspects of model construction that require the most attention. 
We would then identify the biological entities that need to be 
distinguished, and then consider whether and how each of these 
should be modelled, according to the dimensions discussed 
above, referring to the references provided and standard texts 
on process modelling. This approach can also be applied when 
analysing the relationship between studies reported in the 
literature, to compare and contrast model-based findings. This 
should make it easier to pinpoint complementarities between 
approaches used to address very similar questions about related 
(or even the same) epidemiological systems. Indeed, although 
the examples provided in this article all relate to bTB or FMD in 
cattle, different modelling decisions are made in different pieces 
of work, as was also the case for work focusing on the 2001 FMD 
epidemic (42). For example, Ferguson et al. (15) investigated the 
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potential for exploiting local clustering of transmission to target 
culling, and chose an approach (deterministic moment closure) 
that formulated disease spread in the context of an ODE model 
(as in Figure  1, 4d) but where individual states represent not 
just the status of individual farms, but the combined statuses of 
triplets of farms (e.g., not just states S, I, and R in an SIR model, 
but with S-S-I an explicit state representing the proportion of 
triplets with two susceptible farms and one infected farm). 
Geographical space was represented abstractly by “counting,” 
on the map of farms in Great Britain, the proportion of times 
two neighbouring farms shared a neighbour (this proportion 
is commonly called the “clustering coefficient”). This decision 
may have been motivated both by their previous analytical 
approaches and the need to provide rapid, responsive advice. 
However, similar situations can lead to different decisions: 
Keeling et  al. (28) had previously used deterministic moment 
closure models to describe epidemiological invasions scenarios, 
but in 2001 developed a stochastic “transmission kernel” simula-
tion approach (as in Figure 1, 3a with farms as the individuals 
and transmission probability declining with distance) in order 
to capture the explicit heterogeneity in transmission potential 
of FMD across Great Britain (28). Our examples are drawn 
from research on bTB and FMD, but for other ecological or 
epidemiological systems, different sets of model types might be 
more appropriate. For example, for diseases of wildlife, natural 
host groupings corresponding to herds may not exist, making 
this simplification inappropriate, or host movements or demo-
graphic processes might be highly seasonal, leading to different 
decisions about how to model time. In addition, because bTB 
and FMD are reportable diseases in the UK, good datasets exist 
for their tracking; however, for other diseases or in areas of the 
world where this is not the case, more limited data can influence 
modelling decisions.

Once possible modelling options are identified, their appro-
priateness can then be (re)considered with reference to the epide-
miological system, our motivation for using modelling, and the 
precise questions asked. It is therefore valuable to identify explicit 
criteria for assessing whether modelling decisions are satisfactory 
in terms of their accuracy and level of detail. Drawing on military 
terminology, Holling (43) contrasted strategic models, usually 
designed to be as simple as possible to reveal potential explana-
tory generalities, and tactical models, deliberately higher in 
complexity because they are designed to predict the dynamics of 
specific systems. Historically, models used to explore theory have 
typically been simpler than those used to apply it, in part because 
they have been more amenable to analysis using mathematical 
techniques. However, contemporary techniques including prin-
cipled use of computer simulation (44) and mathematical tools 
for the analysis of stochastic systems (45) have made it easier to 
conduct theory exploration and obtain general results, even for 
relatively complex models. Although still a common heuristic, 
the distinction between simple and complex models and their 
relative roles in relation to motivations for using models is begin-
ning to break down (46).

In determining the appropriate level of complexity or output 
accuracy, we focus on three factors: the respects, the degree, and 
the specificity of the system to which results should apply (5). 

When we determine the respects in which a model is required to 
be accurate or sufficiently detailed, we are asking the qualitative 
question “what epidemiologically relevant phenomena do we 
want our model to reproduce?” For example, when using models 
to explore theory, we may decide that it is sufficient that our 
model provides information on whether a disease persists or 
goes extinct; however, when we use models to apply theory, we 
may also want the model to provide information on time until 
extinction or the spatial locations at which a pathogen is likely 
to persist the longest. When we determine the extent to which 
our model is required to be accurate, we ask the quantitative 
question of “how close do we need those phenomena to be to 
those seen in the real world?” In terms of model outputs, this 
question is primarily relevant when we use models to help us 
generate, test and apply theory. However, in relation to model 
inputs, such as parameter values and initial conditions, it can 
apply to all motivations for model use. When we determine the 
system for which our model is required to be sufficiently accurate 
or detailed, we are asking “for what systems do we want this 
to apply?” For example, much of the more theoretical work 
using process models, often in the form of theory exploration, 
is deliberately general and a specific disease system may not be 
mentioned (e.g., it may apply to abstract SIR processes); when 
applying theory, it is usually critical for the model to relate to 
a specific disease system, but it may be sufficient for it to be 
accurate for a country or region, or host breed. Decisions about 
the level of detail or accuracy required of a model will often be 
driven by practical considerations such as funding, publication 
targets, or data availability.

DisCussion

Historically, the majority of veterinary disease modelling has 
followed a statistical approach, in which the focus has been on 
characterising statistical associations between a response vari-
able and explanatory variables. For example, we might use this 
approach to identify farm factors—e.g., sanitation practices—
that affect risk of an outbreak. This form of modelling becomes 
increasingly involved if the explanatory variables interact with 
one another, or if the response variable depends on its previous 
values. Although techniques have been developed to cope with 
interactions between the variables of interest, these become 
increasingly unwieldy as the number of interactions increases. 
Further, even the sophisticated techniques developed to account 
for these interactions usually only identify them as statistical 
relationships and do not explicitly represent the direction of 
causality in the links between them. Furthermore, models of 
this type are particularly reliant on all variables being available 
within a single dataset, using information on measurable states 
to infer knowledge of processes from interactions between 
variables that define those states. Process models, on the other 
hand, focus explicitly on biological processes. They can, there-
fore, generate considerably greater insight for investigations 
of the impact of changes to those processes, for example, to 
understand the population level impact of imperfect vaccina-
tion. Recent developments include the introduction of Bayesian 
modelling approaches, such as hidden Markov models that are 
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underpinned by process models, and that bridge statistical and 
process approaches.

There are good reasons for increasing interest in process 
modelling among disease ecologists and veterinary epidemi-
ologists. Yet, making decisions about how to construct process 
models, and knowing how to compare different approaches in 
the literature, is complicated by the existence of multiple process 
model types and the difficulty of establishing the relationship 
between them. In applied work, the model is often treated as a 
tool, so only the chosen modelling approach is described without 
comparison with alternatives, while in more theoretical work 
focused on developing new modelling approaches, space often 
limits comparative discussion to a small set of related model-
ling approaches. Further, most introductory texts on process 
modelling in disease ecology proceed by describing prototypical 
examples of a small range of modelling paradigms. This tends to 
obscure the relationships among modelling approaches and fails 
to make explicit the link between the appropriateness of different 
approaches for different systems, while reinforcing the popular-
ity of particular paradigmatic approaches somewhat arbitrarily.

Ideally, model construction decisions should be guided pri-
marily by the system, what we know about it, and our scientific 
questions. Nonetheless, our decisions are often constrained to 
some extent by practical considerations, including technical 
limitations (e.g., computational resources) and modelling 
knowledge. Although the increasing development of specialist 
software simplifies the mechanics of modelling, understanding 
the modelling assumptions embedded within any software used 
is important for accurate interpretation of outputs. As models 
incorporate more and more components—such as in the case of 
ABMs or complex models represented in matrix form—we can 
quickly reach a situation in which more information needs to 
be available to simulate or solve the model than can be held in 
computer memory. Time can also be a constraint if models take 
a long time to run or solve, especially if they need to be run or 
solved multiple times. Depending on which aspects of the out-
puts we choose to store, these can put a strain on storage capacity, 
and although hard disk storage capacity is increasingly cheap, 
managing these large volumes of data, both in terms of transfer-
ring data between devices and maintaining a file structure that 
is easy to navigate, can be challenging. In relation to technical 
knowledge, there are limitations to the number of techniques we 
can acquire, and it is often preferable to sacrifice some accuracy 
or detail in modelling decisions to allow us to use an approach 
that we understand well, in terms of its strengths, weaknesses, 
and underpinning assumptions. A strong understanding allows 
us to safeguard against known pitfalls, and critically, to better 
account for any assumptions in interpreting model outcomes.  
In interdisciplinary work or work at the research–policy inter-
face where team members often have different skillsets, it can 
also be advantageous to use a form of modelling that all team 
members can understand.

In this article, we have described one way to approach model 
construction, based around a set of modelling decisions and their 
relationship with the system under study, the research questions, 

and our motivations in using modelling. In most cases, we have 
presented modelling decisions as though they were either/or 
decisions. In reality, within the same project, several motivations 
might underpin model use. Similarly, researchers often use sev-
eral models, and do so with a range of motivations. For example, 
we might begin by using a modelling exercise to formalise our 
ideas about an epidemiological system, constructing a model 
that we use to explore theory, ultimately using it to test theory 
once we have acquired appropriate data (47). We might also try 
out multiple modelling frameworks in a single piece of work. 
For example, it is often very valuable to begin with a relatively 
simple model that we understand well or that has been analysed 
previously and incrementally add or change the epidemiologi-
cal processes involved. This allows us to understand the effects 
of these changes, as well as to locate any errors in our logic or 
solution processes. For example, even if we are interested in the 
effects of host population heterogeneity, we often begin with a 
simple model of a well-mixed host population for comparison. 
Indeed, using multiple model types to address the same problem 
is often very useful, both within and between research teams, as 
redundancy, overlap, and replication serve to reduce the risk of 
unidentified errors (48).

To conclude, we believe that the structured approach 
presented here, based on the identification and classification 
of model construction decisions, should help those new to 
epidemiological modelling to reach a level of model con-
struction expertise more quickly, while providing an analytic 
structure and terminology for more experienced readers. This 
conceptual analysis helps clarify the relationship between the 
biological system and the assumptions about it embedded in the 
model and highlights the similarities and differences between  
modelling approaches.
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