12 research outputs found

    Hepatocyte Permissiveness to Plasmodium Infection Is Conveyed by a Short and Structurally Conserved Region of the CD81 Large Extracellular Domain

    Get PDF
    Invasion of hepatocytes by Plasmodium sporozoites is a prerequisite for establishment of a malaria infection, and thus represents an attractive target for anti-malarial interventions. Still, the molecular mechanisms underlying sporozoite invasion are largely unknown. We have previously reported that the tetraspanin CD81, a known receptor for the hepatitis C virus (HCV), is required on hepatocytes for infection by sporozoites of several Plasmodium species. Here we have characterized CD81 molecular determinants required for infection of hepatocytic cells by P. yoelii sporozoites. Using CD9/CD81 chimeras, we have identified in CD81 a 21 amino acid stretch located in a domain structurally conserved in the large extracellular loop of tetraspanins, which is sufficient in an otherwise CD9 background to confer susceptibility to P. yoelii infection. By site-directed mutagenesis, we have demonstrated the key role of a solvent-exposed region around residue D137 within this domain. A mAb that requires this region for optimal binding did not block infection, in contrast to other CD81 mAbs. This study has uncovered a new functionally important region of CD81, independent of HCV E2 envelope protein binding domain, and further suggests that CD81 may not interact directly with a parasite ligand during Plasmodium infection, but instead may regulate the function of a yet unknown partner protein

    Temperature Shift and Host Cell Contact Up-Regulate Sporozoite Expression of Plasmodium falciparum Genes Involved in Hepatocyte Infection

    Get PDF
    Plasmodium sporozoites are deposited in the skin by Anopheles mosquitoes. They then find their way to the liver, where they specifically invade hepatocytes in which they develop to yield merozoites infective to red blood cells. Relatively little is known of the molecular interactions during these initial obligatory phases of the infection. Recent data suggested that many of the inoculated sporozoites invade hepatocytes an hour or more after the infective bite. We hypothesised that this pre-invasive period in the mammalian host prepares sporozoites for successful hepatocyte infection. Therefore, the genes whose expression becomes modified prior to hepatocyte invasion would be those likely to code for proteins implicated in the subsequent events of invasion and development. We have used P. falciparum sporozoites and their natural host cells, primary human hepatocytes, in in vitro co-culture system as a model for the pre-invasive period. We first established that under co-culture conditions, sporozoites maintain infectivity for an hour or more, in contrast to a drastic loss in infectivity when hepatocytes were not included. Thus, a differential transcriptome of salivary gland sporozoites versus sporozoites co-cultured with hepatocytes was established using a pan-genomic P. falciparum microarray. The expression of 532 genes was found to have been up-regulated following co-culture. A fifth of these genes had no orthologues in the genomes of Plasmodium species used in rodent models of malaria. Quantitative RT-PCR analysis of a selection of 21 genes confirmed the reliability of the microarray data. Time-course analysis further indicated two patterns of up-regulation following sporozoite co-culture, one transient and the other sustained, suggesting roles in hepatocyte invasion and liver stage development, respectively. This was supported by functional studies of four hitherto uncharacterized proteins of which two were shown to be sporozoite surface proteins involved in hepatocyte invasion, while the other two were predominantly expressed during hepatic parasite development. The genome-wide up-regulation of expression observed supports the hypothesis that the shift from the mosquito to the mammalian host contributes to activate quiescent salivary gland sporozoites into a state of readiness for the hepatic stages. Functional studies on four of the up-regulated genes validated our approach as one means to determine the repertoire of proteins implicated during the early events of the Plasmodium infection, and in this case that of P. falciparum, the species responsible for the severest forms of malaria

    The VVD (135–137)→AAA and DDD (137–139)→AAA mutants unable to support infection by <i>P. yoelii</i> sporozoites interact with CD9P-1 and EWI-2.

    No full text
    <p>CHO cells were transiently transfected with WT or mutant CD81 plasmids (in pEGFP-N3), together with a CD9P-1 (top) or a EWI-2 (bottom) cDNA. After 48 h, the cells were lysed with digitonin and immunoprecipitations with antibodies against CD81, CD9P-1 and EWI-2 were performed. After electrophoresis and transfer, the membranes were incubated with biotin-labelled mAbs to CD81 (TS81), CD9P-1 (1F11) and EWI-2 (8A12). The mutants are designed as follows: VVD: VVD (135–137)→AAA; DDD: DDD (137–139)→AAA</p

    3D structure of CD81 LEL.

    No full text
    <p>The drawing of CD81 LEL (PDB #1g8q) was generated in MolMol. Four helices (A, C, D, E) are drawn in red while the B helix, crucial for <i>P. yoelii</i> infection is displayed in blue. The black balls indicate the CCG ubiquitous motif. The crucial D137 as well as D138 and D139 are in purple while V135 and V136 are in royal blue. Residues V146, T149, F150, T153 and L154 putatively involved in contact with the SEL are indicated in dark blue. T163, F186 and D196 residues, in yellow, have been reported to play a role in the HCV E2 glycoprotein binding to CD81-LEL. Residues V135, V136, T163, F186 and D196 projected backward, behind the drawing plane. The two disulfides bridges are colored light coral. Hydrophilic residues K144, K148 and E152 located on the top of the B helix are in green. The SEL, in cyan, is in front of the drawing plane.</p

    The A and B helices of CD81 LEL confer CD9/CD81 chimeric molecules the ability to support infection by <i>P. yoelii</i> sporozoites.

    No full text
    <p>A: Amino acid sequence alignment of CD81, CD9, and chimeras. Only the sequence of the LEL is shown. The origin of the flanking domains (TM3 and TM4) is shown on both sides of the sequence. The position of CD81 helices is indicated on the top of the alignment. CD81 residues are shown in red capital letters and CD9 residues in blue small letters. The CCG consensus site and other conserved cysteines, as well as a functionally important site (VVDDD) are underlined. CD81 LEL residues presumably in contact with the SEL are indicated with an asterisk. Open circles shows residues known to be involved in the interaction with HCV E2 glycoprotein. B and C: HepG2-A16 cells were transiently transfected with plasmids expressing CD9, CD81, or CD81/CD9 chimeras and infected two days later with <i>P. yoelii</i> sporozoites. After two days incubation, the number of EEF-infected cells was determined by immunofluorescence in triplicate wells. Results are expressed as mean±s.d. **, p<0.01 and *, p<0.05 as compared to CD9-transfected cells.</p

    21 residues of CD81 in a CD9 backbone are sufficient to render hepatocytic cells susceptible to <i>P. yoelii</i> sporozoites infection.

    No full text
    <p>A: Amino acid sequence alignment of CD9, CD81 and chimeras. Only the sequence of the large extracellular loop of the different chimeras is shown. The origin of the flanking domains (TM3 and TM4) is shown on both sides of the sequence. The position of CD81 helices are indicated on the top of the alignment. CD81 residues are shown in red capital letters and CD9 residues in blue small letters. The CCG consensus site and other conserved cysteines, as well as a functionally important site (VVDDD) are underlined B: HepG2-A16 cells were transiently transfected with plasmids expressing CD9, CD81, or CD81/CD9 chimeras and infected two days later with <i>P. yoelii</i> sporozoites. After two days incubation, the number of EEF-infected cells in triplicate wells was determined by immunofluorescence. Results are expressed as mean±s.d. **, p<0.01 as compared to mock-transfected cells. C: HepG2-A16 cells stably expressing CD81, CD9, CD81ccg9 or CD9[81B] were infected with <i>P. yoelii</i> sporozoites. After two days incubation, the number of EEF-infected cells was determined in triplicate wells by immunofluorescence. Results are expressed as mean±s.d. **, p<0.01 as compared to mock-transfected cells.</p

    A CD81 mAb binds poorly to the non-functional mutant VVD (135–137)→AAA but does not block infection.

    No full text
    <p>A: Hepa 1–6 cells were transfected with the indicated construct in pEGFP-N3 and analyzed for the surface expression and recognition of the transgene by several CD81 mAb using flow-cytometry analysis. Data are expressed as mean fluorescence intensity. In this experiment, the antibodies were used at 20 ”g/ml (JS64, M38, JS81) or at 1/100 ascitic fluid dilution (all other mAbs). B: HepG2-A16/CD81 cells were infected with <i>P. yoelii</i> sporozoites in the presence of the indicated mAbs at 25 ”g/ml except when otherwise indicated. All mAbs are directed to CD81 except TS9 which is a CD9 mAb and does not inhibit <i>P. yoelii</i> infection.</p

    The Host Protein Aquaporin-9 is Required for Efficient Plasmodium falciparum Sporozoite Entry into Human Hepatocytes

    No full text
    International audienceHepatocyte invasion by Plasmodium sporozoites represents a promising target for innovative antimalarial therapy, but the molecular events mediating this process are still largely uncharacterized. We previously showed that Plasmodium falciparum sporozoite entry into hepatocytes strictly requires CD81. However, CD81-overexpressing human hepatoma cells remain refractory to P. falciparum infection, suggesting the existence of additional host factors necessary for sporozoite entry. Here, through differential transcriptomic analysis of human hepatocytes and hepatoma HepG2-CD81 cells, the transmembrane protein Aquaporin-9 (AQP9) was found to be among the most downregulated genes in hepatoma cells. RNA silencing showed that sporozoite invasion of hepatocytes requires AQP9 expression. AQP9 overexpression in hepatocytes increased their permissiveness to P. falciparum. Moreover, chemical disruption with the AQP9 inhibitor phloretin markedly inhibited hepatocyte infection. Our findings identify AQP9 as a novel host factor required for P. falciparum sporozoite hepatocyte-entry and indicate that AQP9 could be a potential therapeutic target
    corecore