301 research outputs found

    Comparative analysis of dynamic cell viability, migration and invasion assessments by novel real-time technology and classic endpoint assays

    Get PDF
    Background: Cell viability and motility comprise ubiquitous mechanisms involved in a variety of (patho)biological processes including cancer. We report a technical comparative analysis of the novel impedance-based xCELLigence Real-Time Cell Analysis detection platform, with conventional label-based endpoint methods, hereby indicating performance characteristics and correlating dynamic observations of cell proliferation, cytotoxicity, migration and invasion on cancer cells in highly standardized experimental conditions. Methodology/Principal Findings: Dynamic high-resolution assessments of proliferation, cytotoxicity and migration were performed using xCELLigence technology on the MDA-MB-231 (breast cancer) and A549 (lung cancer) cell lines. Proliferation kinetics were compared with the Sulforhodamine B (SRB) assay in a series of four cell concentrations, yielding fair to good correlations (Spearman's Rho 0.688 to 0.964). Cytotoxic action by paclitaxel (0-100 nM) correlated well with SRB (Rho>0.95) with similar IC50 values. Reference cell migration experiments were performed using Transwell plates and correlated by pixel area calculation of crystal violet-stained membranes (Rho 0.90) and optical density (OD) measurement of extracted dye (Rho. 0.95). Invasion was observed on MDA-MB-231 cells alone using Matrigel-coated Transwells as standard reference method and correlated by OD reading for two Matrigel densities (Rho>0.95). Variance component analysis revealed increased variances associated with impedance-based detection of migration and invasion, potentially caused by the sensitive nature of this method. Conclusions/Significance: The xCELLigence RTCA technology provides an accurate platform for non-invasive detection of cell viability and motility. The strong correlations with conventional methods imply a similar observation of cell behavior and interchangeability with other systems, illustrated by the highly correlating kinetic invasion profiles on different platforms applying only adapted matrix surface densities. The increased sensitivity however implies standardized experimental conditions to minimize technical-induced variance

    Observer variability of absolute and relative thrombus density measurements in patients with acute ischemic stroke

    Get PDF
    Introduction: Thrombus density may be a predictor for acute ischemic stroke treatment success. However, only limited data on observer variability for thrombus density measurements exist. This study assesses the variability and bias of four common thrombus density measurement methods by expert and non-expert observers. Methods: For 132 consecutive patients with acute ischemic stroke, three experts and two trained observers determined thrombus density by placing three standardized regions of interest (ROIs) in the thrombus and corresponding contralateral arterial segment. Subsequently, absolute and relative thrombus densities were determined using either one or three ROIs. Intraclass correlation coefficient (ICC) was determined, and Bland–Altman analysis was performed to evaluate interobserver and intermethod agreement. Accuracy of the trained observer was evaluated with a reference expert observer using the same statistical analysis. Results: The highest interobserver agreement was obtained for absolute thrombus measurements using three ROIs (ICCs ranging from 0.54 to 0.91). In general, interobserver agreement was lower for relative measurements, and for using one instead of three ROIs. Interobserver agreement of trained non-experts and experts was similar. Accuracy of the trained observer measurements was comparable to the expert interobserver agreement and was better for absolute measurements and with three ROIs. The agreement between the one ROI and three ROI methods was good. Conclusion: Absolute thrombus density measurement has superior interobserver agreement compared to relative density measurement. Interobserver variation is smaller when multiple ROIs are used. Trained non-expert observers can accurately and reproducibly assess absolute thrombus densities using three ROIs

    Automated entire thrombus density measurements for robust and comprehensive thrombus characterization in patients with acute ischemic stroke

    Get PDF
    Background and Purpose: In acute ischemic stroke (AIS) management, CT-based thrombus density has been associated with treatment success. However, currently used thrombus measurements are prone to inter-observer variability and oversimplify the heterogeneous thrombus composition. Our aim was first to introduce an automated method to assess the entire thrombus density and then to compare the measured entire thrombus density with respect to current standard manual measurements. Materials and Method: In 135 AIS patients, the density distribution of the entire thrombus was determined. Density distributions were described usingmedians, interquartile ranges (IQR), kurtosis, and skewedness. Differences between themedian of entire thrombusmeasurements and commonly applied manualmeasurements using 3 regions of interest were determined using linear regression. Results: Density distributions varied considerably with medians ranging from 20.0 to 62.8 HU and IQRs ranging from 9.3 to 55.8 HU. The average median of the thrombus density distributions (43.5 ± 10.2 HU) was lower than the manual assessment (49.6 ± 8.0 HU) (p<0.05). The difference between manual measurements and median density of entire thrombus decreased with increasing density (r = 0.64; p<0.05), revealing relatively higher manual measurements for low density thrombi such that manual density measurement tend overestimates the real thrombus density. Conclusions: Automatic measurements of the full thrombus expose a wide variety of thrombi density distribution, which is not grasped with currently used manual measurement. Furthermore, d

    Two-year clinical follow-up of the Multicenter Randomized Clinical Trial of Endovascular Treatment for Acute Ischemic Stroke in The Netherlands (MR CLEAN): Design and statistical analysis plan of the extended follow-up study

    Get PDF
    Background: MR CLEAN was the first randomized trial to demonstrate the short-term clinical effectiveness of endovascular treatment in patients with acute ischemic stroke caused by large vessel occlusion in the anterior circulation. Several other trials confirmed that endovascular treatment improves clinical outcome at three months. However, limited data are available on long-term clinical outcome. We aimed to estimate the effect of endovascular treatment on functional outcome at two-year follow-up in patients with acute ischemic stroke. Secondly, we aimed to assess the effect of endovascular treatment on major vascular events and mortality during two years of follow-up. Methods: MR CLEAN is a multicenter clinical trial with randomized treatment allocation, open-label treatment, and blinded endpoint evaluation. Patients included were 18 years or older with acute ischemic stroke caused by a proven anterior proximal artery occlusion who could be treated within six hours after stroke onset. The intervention contrast was endovascular treatment and usual care versus no endovascular treatment and usual care. The current study extended the follow-up duration from three months to two years. The primary outcome is the score on the modified Rankin scale at two years. Secondary outcomes include all-cause mortality and the occurrence of major vascular events within two years of follow-up. Discussion: The results of our study provide information on the long-term clinical effectiveness of endovascular treatment, which may have implications for individual treatment decisions and estimates of cost-effectiveness. Trial registration:NTR1804. Registered on 7 May 2009; ISRCTN10888758. Registered on 24 July 2012 (main MR CLEAN trial); NTR5073. Registered on 26 February 2015 (extended follow-up study)

    Dynamical biomarkers in teams and other multiagent systems

    Get PDF
    Effective team behavior in high-performance environments such as in sport and the military requires individual team members to efficiently perceive the unfolding task events, predict the actions and action intents of the other team members, and plan and execute their own actions to simultaneously accomplish individual and collective goals. To enhance team performance through effective cooperation, it is crucial to measure the situation awareness and dynamics of each team member and how they collectively impact the team's functioning. Further, to be practically useful for real-life settings, such measures must be easily obtainable from existing sensors. This paper presents several methodologies that can be used on positional and movement acceleration data of team members to quantify and/or predict team performance, assess situation awareness, and to help identify task-relevant information to support individual decision-making. Given the limited reporting of these methods within military cohorts, these methodologies are described using examples from team sports and teams training in virtual environments, with discussion as to how they can be applied to real-world military teams.</p

    Biomechanical Thresholds Regulate Inflammation through the NF-κB Pathway: Experiments and Modeling

    Get PDF
    BACKGROUND: During normal physical activities cartilage experiences dynamic compressive forces that are essential to maintain cartilage integrity. However, at non-physiologic levels these signals can induce inflammation and initiate cartilage destruction. Here, by examining the pro-inflammatory signaling networks, we developed a mathematical model to show the magnitude-dependent regulation of chondrocytic responses by compressive forces. METHODOLOGY/PRINCIPAL FINDINGS: Chondrocytic cells grown in 3-D scaffolds were subjected to various magnitudes of dynamic compressive strain (DCS), and the regulation of pro-inflammatory gene expression via activation of nuclear factor-kappa B (NF-kappaB) signaling cascade examined. Experimental evidences provide the existence of a threshold in the magnitude of DCS that regulates the mRNA expression of nitric oxide synthase (NOS2), an inducible pro-inflammatory enzyme. Interestingly, below this threshold, DCS inhibits the interleukin-1beta (IL-1beta)-induced pro-inflammatory gene expression, with the degree of suppression depending on the magnitude of DCS. This suppression of NOS2 by DCS correlates with the attenuation of the NF-kappaB signaling pathway as measured by IL-1beta-induced phosphorylation of the inhibitor of kappa B (IkappaB)-alpha, degradation of IkappaB-alpha and IkappaB-beta, and subsequent nuclear translocation of NF-kappaB p65. A mathematical model developed to understand the complex dynamics of the system predicts two thresholds in the magnitudes of DCS, one for the inhibition of IL-1beta-induced expression of NOS2 by DCS at low magnitudes, and second for the DCS-induced expression of NOS2 at higher magnitudes. CONCLUSIONS/SIGNIFICANCE: Experimental and computational results indicate that biomechanical signals suppress and induce inflammation at critical thresholds through activation/suppression of the NF-kappaB signaling pathway. These thresholds arise due to the bistable behavior of the networks originating from the positive feedback loop between NF-kappaB and its target genes. These findings lay initial groundwork for the identification of the thresholds in physical activities that can differentiate its favorable actions from its unfavorable consequences on joints

    Jumping into the deep-end: results from a pilot impact evaluation of a community-based aquatic exercise program

    Get PDF
    This multi-center quasi-experimental pilot study aimed to evaluate changes in pain, joint stiffness, physical function, and quality of life over 12 weeks in adults with musculoskeletal conditions attending ‘Waves’ aquatic exercise classes. A total of 109 adults (mean age, 65.2 years; range, 24–93 years) with musculoskeletal conditions were recruited across 18 Australian community aquatic centers. The intervention is a peer-led, 45 min, weekly aquatic exercise class including aerobic, strength, flexibility, and balance exercises (n = 67). The study also included a control group of people not participating in Waves or other formal exercise (n = 42). Outcomes were measured using the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) and EuroQoL five dimensions survey (EQ-5D) at baseline and 12 weeks. Satisfaction with Waves classes was also measured at 12 weeks. Eighty two participants (43 Waves and 39 control) completed the study protocol and were included in the analysis. High levels of satisfaction with classes were reported by Waves participants. Over 90 % of participants reported Waves classes were enjoyable and would recommend classes to others. Waves participants demonstrated improvements in WOMAC and EQ-5D scores however between-group differences did not reach statistical significance. Peer-led aquatic exercise classes appear to improve pain, joint stiffness, physical function and quality of life for people with musculoskeletal conditions. The diverse study sample is likely to have limited the power to detect significant changes in outcomes. Larger studies with an adequate follow-up period are needed to confirm effects
    corecore