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Effective team behavior in high-performance environments such as in sport and the military requires individual
teammembers to efficiently perceive the unfolding task events, predict the actions and action intents of the other
team members, and plan and execute their own actions to simultaneously accomplish individual and collective
goals. To enhance team performance through effective cooperation, it is crucial to measure the situation aware-
ness and dynamics of each teammember and how they collectively impact the team's functioning. Further, to be
practically useful for real-life settings, suchmeasuresmust be easily obtainable from existing sensors. This paper
presents severalmethodologies that canbeused on positional andmovement acceleration data of teammembers
to quantify and/or predict teamperformance, assess situation awareness, and to help identify task-relevant infor-
mation to support individual decision-making. Given the limited reporting of these methods within military co-
horts, these methodologies are described using examples from team sports and teams training in virtual
environments, with discussion as to how they can be applied to real-world military teams.
© 2023 The Authors. Published by Elsevier Ltd on behalf of Sports Medicine Australia. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Effective team behavior in high-performance environments such as in
sports and the military requires that team members reciprocally coordi-
nate their actions with respect to each other and changing task demands.
This requires that individual team members efficiently perceive the
unfolding task events, predict the actions and action intents of the other
teammembers, andplan and execute their ownactions to simultaneously
accomplish individual and collective goals.1,2 When individuals are per-
forming independent tasks that collectively contribute to the achieve-
ment of a common, joint goal, it is referred to as cooperation. To
understand the complex behavioral demands of cooperation relevant to
effective team performance, it is therefore necessary to quantify the dy-
namics and situation awareness of individual team members and how
these collectively contribute to the team's performance. The aim of this
paper is to highlight various time series-based methods of measuring
atrick.nalepka@mq.edu.au

on behalf of Sports Medicine Austral
team dynamics and situation awareness and the analytical frameworks
that can be applied to investigate team performance and cooperation in
various task contexts. Specifically, these methodologies analyze situa-
tional awareness via visual perception, movements of body segments
(e.g., head and torso), or positional data of personnel and entire teams
during team-based tasks using either basic spatio-temporal measures of
each individual's activity (e.g., positions, velocities, and head orienta-
tions), or measures that capture the complexity of human movement
(e.g., detrended fluctuation analysis and complexity matching). Further,
we describe how explainable-AI techniques have been used to elucidate
the perceptual features individuals use during team performance to facil-
itate decision-making. Finally, this review highlights collective measures
like cluster phase analysis and network analysis, and how they can be
used to describe team behavior and performance in real world settings.

The significance of this research summary is that, depending on the
task complexity, availability of data, and the objectives of the analyses,
researchers can use one or a combination of these methods to predict
the success of individuals and teams, identify the markers of successful
team performance, decision making, and situational awareness, or to
structure skill learning paradigms. Themethods discussed in this review
were presented as part of an expert panel at the “2022 Defence
ia. This is an open access article under the CC BY-NC-ND license (http://creativecommons.
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Biomarker Symposium – Biomarkers of Performance and Injury in the
Warfighter: Inside and Out”. Therefore, we note that this is not an ex-
haustive list or a systematic review of various methodologies that can
be used to measure team performance and we encourage the readers
to refer to these articles 3–6 for more detailed reviews of various
methods of measuring team performance and situational awareness.

2. Measuring situation awareness

Situation awareness can be defined as an individual's understanding
of ‘what is going on around them’7 and how exactly it is established by
individuals working within teams has been a rich topic for research.8

When engaged in team tasks, team situation awareness also includes
each individual's understanding of the roles each member will adopt,
and how to appropriately coordinate their actions. Within the team-
work literature, there is a tradition of assessing situation awareness dur-
ing a task exercise with the use of debriefing questionnaires to identify
the extent to which teammembers were aware of task-relevant items.9

However, this is not possible for real-world analyses as it interrupts the
ongoing team dynamics and would be dangerous in military contexts.

Therefore, in-situ measurements such as monitoring visual search
behaviors are onemodality that can be implemented to assess situation
awareness in such environments. The role of visual perception in estab-
lishing situation awareness is undisputed. For example, in Endsley's
three-level framework,10 ‘perception of elements in current situation’,
is the first level for providing an agent's overall situation awareness
(see also Boyd's observe–orient–decide–act [OODA] loop11). In the
team sports domain, eye movements are commonly used to identify at-
tentional behaviors. However, the relationship between visual search
behaviors and domain-specific expertise has been a topic of debate
within team sports. For example, both fewer fixations for a longer
duration12 andmore fixations for a shorter duration13 have been attrib-
uted to more expert footballers. Despite this contradiction, some re-
searchers have argued that differences in eye movements can signal
differences in player expertise,14 while others emphasize that these
findings are an artifact of the fact that eyemovements are strongly influ-
enced by task constraints.15,16

2.1. Measuring situation awareness from positional data

In real-world team environments that require whole body environ-
ment interactions andwhere tracking eyemovements can be practically
difficult, head and body positions as a measure of situation awareness,
via visual exploration, can be a better measure of competence and
performance.16,17 Taking an eye-in-head-on-body approach, this also
allows for the use of more robust sensors in a real-world setting.17

Using this approach, head and body-mounted inertial measurement
units (IMUs) and global positioning system (GPS) sensors have been
used to measure physical performance and visual scanning in real-
world scenarios. For example, in representative football (soccer)
games, it was found that certain aspects of visual scanning behaviors, in
particular exploration frequency (i.e., the number of head movements/
scans - about the longitudinal axis - in a certain time-period) and explo-
ration excursion (i.e., the angular distance - about the longitudinal axis -
of the movement) are linked to a player's situation awareness
(i.e., speed of decision-making and performance outcomes, such as pass-
ing decisions and passing success).17,18 Further, even when players are
fatigued, visual scanning behaviors remain unaffected.19

Within military contexts, simple wearable sensors such as IMUs can
be embedded into personnel kits and simple data-analytic measures,
such as visual scanning frequency and excursion mentioned above,
canprovide an estimate of situation awareness. This is expected to espe-
cially be the case in conflict situations such as close combat and special
forces, where both the head and body frequently rotate tomonitor their
surroundings. While IMUs have been used within military contexts to
test target acquisition/aiming and warfighter performance during a
S10
bounding rush20 and wearable GPS devices (also containing IMUs)
have also been worn during field-based section attacks,21 there are
further applications for these technologies toward quantifying military
team behaviors and performance. For the context of firing a weapon
on the move, IMUs are expected to provide a better and practical
solution than systems such as head-worn eye trackers.

2.2. Measuring situation awareness via fluctuations in player movement

Although useful, summary-level measures such as mean frequency
and angular excursion of head scanning behaviorsmaymask potentially
useful information when assessing situation awareness within team
contexts, specifically the structure of which these values change across
time. Previous work has theorized that the structure of variation in
such signals can provide valuable information about the organization
of the underlying cognitive system.22 Onemethod to capture this struc-
ture is detrended fluctuation analysis (DFA).23

DFA involves linearly detrending a signal at various window sizes,
averaging the residual variance across windows of a similar length,
and then plotting the resultant value on a log–log plot for each window
size. The slope of the resulting best-fit line provides an estimate for how
variability is structured across time (where the slope is represented as
DFAα). Unstructured, time-independent variability results in slope
values ≈ 0.5. Slope values < 0.50 are indicative of an anti-persistent
signal that is reactive to previous inputs (e.g., such as tapping to a
metronome24). Slope values > 0.50 and approaching 1.00 indicate per-
sistence in the variability of the time series (i.e., positive [negative] de-
viations are more likely to follow positive [negative] deviations). A
slope of 1.00 indicates fractal structure (i.e., pink noise) and is a signa-
ture of adaptive behavior.25

The value of DFAα is sensitive to experimental manipulation
and is theorized to reflect an interaction between individual
agency and control, with constraints provided by the environment
and task context.26,27 Tasks which exhibit strong external constraints
(e.g., unpredictable stimulus onset26) produce behavior fluctuations
which are random/time-independent. When the constraints from the
environment are lessened, such as through greater control during skill
development,28 behavior fluctuations become more interdependent
which reflects greater coupling between the agent and their environ-
ment. DFAα can be understood as reflecting a scale that balances
external, environment and task constraints, with internal, individual
constraints.

Of relevance here is that increases in the fractal structure (i.e., DFAα)
are hypothesized to relate to increases in individual situation
awareness. A recent study by Nalepka et al.29 evaluated the efficacy of
using DFA to gage the situation awareness of personnel within a
team-based game involving the search and retrieval of items scattered
throughout a large virtual environment. The study included experimen-
tal manipulations designed to facilitate or hinder teammembers' ability
to develop situation awareness, either by obfuscating their vision with
environmental fog, or by presenting teammembers with a head-up dis-
play (HUD) which provided veridical information about the task envi-
ronment. The results demonstrated that task conditions that made it
easier for teams to develop situation awareness (e.g., no fog, access to
a HUD) were associated with increases to DFAα, applied to team
members' displacement and head scanning behaviors. Further, DFAα

was also shown to increase over multiple sessions as teams developed
expertise with the task.

Not only can DFA be applied to individual time series data, but it can
also be used to quantify the level of coordination within a team. An ap-
proach tomeasure the extent to which teams are coordinated is to con-
sider the extent to which the structure of their behavior is correlated
during ongoing task performance. The coordination of behavior struc-
ture, referred to as “complexity matching”, hypothesizes that the ex-
change of information between two coupled systems is maximized
when their behavior complexities are similar and thus can be used as
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a predictor of team success.30 Indeed, when applied to the dataset from
29, three-person teams who had veridical information about where
their teammateswere locatedwith theHUD exhibited greater complex-
ity matching, quantified as a smaller difference in DFAα values, than
when they did not have this information.

The use of positional and acceleration data, either via GPS sensors or
IMUs can be leveraged to extract useful metrics that correlate with the
development and maintenance of situation awareness of individuals
which can be used in conjunction of other data streams, such as audio
communication. Although these measures have been explored here
using team sports andmultiplayer video gaming, their relevance are ex-
pected to translate to military contexts involving tactical operation. For
measures such as DFA, for example, a data sampling rate of 5 Hz would
require about 2min of data collection for an estimate of situation aware-
ness to be obtainable. Additionally, measuring the degree of complexity
matching may provide an estimate on the ability for team members to
communicate and coordinate their actions effectively.

3. Discerning perceptual features for decision-making using
explainable-AI techniques

In addition to tracking the behaviors of individuals in team settings,
one might also wish to better identify the informational features that
team members use that support their decision-making process. This
can also include uncovering what information best supports optimal
task performance, and what features differentiate expert from non-
expert performance. In contrast to practical reasoning or deliberative
decision-making activities, where individuals extensively evaluate all
possibilities to determine optimal behaviors, the action decisions of in-
dividuals during dynamic team behavior are typically emergent and
highly context dependent.2Moreover, teammembers rapidly and spon-
taneously adapt their actions to achieve task goals as successfully as
possible,31 with little conscious concern for what is optimal. Coherent
with research on naturalistic decision-making,32 the effectiveness of
such action decisions is therefore a function of an actor's situational
awareness,33 with task expertise reflecting the trained attunement of
an actor to information that best specifies which action possibilities
might ensure task success.34 It is these characteristics, however, that
make predicting and understanding human action decisions during
team activities so challenging.35 This includes identifying what task in-
formation supports effective action decisions.36–38

Recently, Auletta et al.39 have provided evidence suggesting that
these challenges can be addressed using cutting-edge Supervised Ma-
chine Learning (SML), Long-Short Term Memory (LSTM) artificial neu-
ral networks, and explainable-AI (Artificial Intelligence) techniques.
Specifically, the authors demonstrated howSML trained LSTMnetworks
can not only be trained to predict the action decisions of individuals
during team activity, but that an analysis of the resultant models using
the explainable-AI technique, SHapley Additive exPlanation (SHAP),40

can also identify and differentiate the sources of information that under-
lie the action decisions of expert and non-expert actors. In this study,
target selection decisions were modeled from data of expert and novice
pairs playing a simulated, fast paced shepherding game.41 For this task,
pairs of players controlled virtual herder agents to corral a herd of four
virtual targets, dispersed around a game field. The recorded perfor-
mance data was then used to train a LSTM network, via SML, to predict
the future target selection decisions of players. Following model devel-
opment and validation, the resultant LSTM models were then analyzed
using the explainable-AI technique SHAP to identify the different
sources of task information that defined the action decisions of expert
and novice players.

The analyses demonstrated that using task information sequences of
1 s in duration, LSTMmodels were successfully able to predict the target
selection decisions of both expert andnovice players at an average accu-
racy above 95 %. Moreover, accurate target predictions could be made
between 640 ms to 2.4 s prior to player decisions being enacted or
S11
observable within the state input sequence. Another key finding was
that the LSTM models were expertise specific; when the expertise
level of the training and test data was mismatched, prediction perfor-
mance dropped to near chance levels. Perhaps most importantly, the
SHAP analysis revealed that this specificity was because experts better
relied on a richer set of informational features (e.g., the location of
their teammate; the direction of movement of targets) compared to
novices. Together, as one would expect, the results demonstrated that
experts were more attuned to the collective state of the task environ-
ment, including when and what task actions were better enacted by
themselves or their co-actor.

Relevant to military contexts, where decision making expertise is
not just required in close-combat situations but also in remote
warfare,42 it is vital to understand the informational features that are a
characteristic of expert decision makers. Advanced AI and explainable-
AI techniques have the potential to distinguish between experts and
novices based on the perceptual processes used by individuals instead
of just end performance measures. Additionally, these insights can be
used to design training interventions to facilitate decision-making via
the perceptual learning of identified features that are associated with
expertise.

4. Capturing group-level behavior and coordination

Geospatial data has been used within military research to analyze
tasks such as simulated aerial combat43 and simulated combat of
dismounted personnel.21 However, while such tasks require the coordi-
nation of multiple individuals, there are no reports, to our knowledge, of
military geospatial data being used to investigate the coordination of
the teams, although this may be due to such information remaining clas-
sified. Comparativelywithin team sports, researchers have also used posi-
tional data of all players on a team to capture cooperative behaviors.
Firstly, time series of positional coordinates (longitude and latitude or X
and Y coordinates in some simulation settings) are recorded for each in-
dividual. After aligning the time series of coordinates for each individual,
simplemeasures, such as team centroid and the dispersion of teammem-
bers around it, can be derived from teammembers' positional data which
can be further used to analyze coordination of movements between the
two and investigate coordinating behaviors between teams.44 Analyses
such as these have obvious applications towardmilitary tasks (e.g., to de-
termine the coordination betweendismounted personnel orfighter pilots
during various tasks), although it should be noted that a limitation of
these measures is that they can often fail to encapsulate the individual
teammember contributions. One of themethods that overcomes this lim-
itation is cluster phase analysis (CPA)45 which quantifies the magnitude
and patterning of the movement synchrony that can occur between the
movements of a group of individuals. Indeed, synchronicity in individual
behavior not only increases group affiliation but is also amarker of better
performance in achieving joint goals.46 Furthermore, synchronicity is not
just limited to physical measures but also extends to neuro-physiological
signals and has been associated with better problem-solving ability.47 In
the context of team sports, CPA can be used to quantify the geospatial re-
lations between players, or subgroups of players within teams48 based on
howplayers attack or defend together, and how these behaviors are influ-
enced by contextual circumstances.49–51 This has clear implications for in-
vestigating the coordination of military personnel in the field who must
also attack or defend as a collective unit such as during a section attack.

Of relevance here is the recent study by Novak et al.49 that has
shown how measures of speed, player spacing, and synchrony (CPA)
of movements between individual team members can be used to de-
scribe collective team behaviors during various phases of an elite
rugby match. Specifically, GPS data was obtained for players during 26
team-match observations of the 2018–2019 Super Rugby season and
playerswere classified as Forwards (positions 1–8) and Backs (positions
9–15), and the speed, spacing, and CPA were calculated for each phase.
Two classification models (multinomial mixed effects regression) were
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developed to test the efficacy of the metrics i.e., player speed, spacing,
and synchrony in classifying phases of play: 1) objective
(i.e., classifying according to the method of gaining possession) and
2) coach-led (i.e., classifying as structured attack, structured defense,
unstructured attack, or unstructured defense).While the coach-led clas-
sification system resulted in somewhat poor accuracy (43.4 % (95 % CI:
40.1–46.7 %)), likely due to the generalized nature of the subjective sys-
tem, the objective system achieved 71.4 % (95 % CI: 63.0–78.9 %) accu-
racy. As such, it appears that such metrics derived from wearable GPS
devices can be used to classify some activity types and therefore deter-
mine when a team transitions from one state of behavior to another.
Given that many team-basedmilitary tasks are complex and performed
in remote settings, wearable technology combined with such analyses
may present an avenue to improve analysis of team performances
such as during after action reviews.

Despite the potential usefulness of positional analysis, it may not be
possible or feasible to collect positional data in some settings e.g., where
satellite connection is poor or where devices cannot be readily
recharged. In these cases (or indeed as a supplement to positional anal-
ysis), concepts fromnetwork science can be applied, where nodes in the
network can represent the individuals in a team and the links to quan-
tify their interactive behaviors with other members.52 In team sports,
game footage can be used, in which the coordination of teammembers
can be quantified from the passing decisions between players of the
same team. The data relating to passing decisions can be quantified as
an adjacency matrix in which the player's name and/or position of the
passer is captured, along with the player's name and/or position of the
receiver for every passing interaction throughout a match. This is then
used to draw a weighted and directed network graph, where each
node represents a player, and the links (edges) represent the direction
(i.e., who passes to whom) and weight (i.e., how often do two players
pass to one another) of the passing interactions. Once a graph is devel-
oped, its topography can be used to describe cooperative behaviors at
three different levels: the collective level, integrative, and individual
level. For researchers studying cooperation in team sports, the collective
and integrative levels are most relevant. Cooperative behaviors at the
collective level consist of measures computed at the team-level, while
the integrative level is measured at the individual level, but relative to
the team. Some collective and integrativemeasures used by researchers
studying cooperative passing networks include the density (i.e., the
number of reciprocal passes between players), closeness (i.e., the extent
to which a player belongs to the shortest path length to every other
node in the network), or betweenness (i.e., the number of times a
node lies on the shortest path between two other nodes). The latter
can be measured both at the integrative as well as collective levels, by
averaging the closeness and betweenness for each player in a team. Co-
operative passing behaviors quantified using metrics like the ones
above have been associated with win probabilities53 and scoring54 in
football as well as field position profiles in rugby union55 among adult
professionals. However, they appear to be unrelated to playing level in
youth association footballers.56

Although described using a team sport example, network science
concepts can be applied to any number of modalities to describe
team-level interactions and can inform the design of communication
networks to maximize performance,57 having clear relevance in under-
standing the coordination dynamics of organizations such as the mili-
tary from tactical action to command-and-control (C2).

5. Discussion

Themethods highlighted in this article are only a small sample of the
methods that can be employed to study social and team dynamics
(e.g.,58,59) in humans, as well as human-autonomous teams (e.g.,60).
These approaches highlight that there is a richness of information that
can be obtained from behavioral time series data and that this informa-
tion can be employed to infer cognitive control and performance.
S12
Furthermore, dependingon the availability of data recording techniques
and by applying analytical methods of varying levels of complexity, dif-
ferent levels of information can be identified, and corresponding mea-
sures can be derived. For instance, to quantify the situation awareness
of team members, depending on the time length of the events or trials,
onemight use simpler visual exploratory action identified from the fre-
quency of the head orientation data for shorter trials' or for longer trials'
DFA computed on a time series consisting of changes in the heading di-
rections of the teammembers. Both methodologies, applied in the right
circumstances, can result in measures of individual and team situation
awareness that are correlated with team performance. In addition to
these behavioral measures, the use of explainable-AI provides a data-
driven method to discern differences in decision-making ability as a
function of expertise. This knowledge can facilitate the development
of targeted training exercises to facilitate perceptual training to improve
performance. Although the examples used in this review stem from our
expertise in sport and computer-mediated team coordination, the
methods and tools presented here can also be leveraged in demanding
contexts such as those found in the military. To conclude, these ap-
proaches help move the field to better understand (e.g., via explainable
AI techniques), track (e.g., via situation awareness measures like DFA)
adaptive individual behavior, and provide a description (e.g., via team-
level measures such as CPA or network-based measures) of team-level
phenomena.
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