24 research outputs found
Structure and internal deformation of thrust sheets in the Sawtooth Range, Montana: insights from anisotropy of magnetic susceptibility
Geological strain analysis of sedimentary rocks is commonly carried out using clast-based techniques. In the absence of valid strain markers, it can be difficult to identify the presence of an early tectonic fabric development and resulting layer parallel shortening (LPS). In order to identify early LPS, we carried out anisotropy of magnetic susceptibility (AMS) analyses on Mississippian limestones from the Sawtooth Range of Montana. The Sawtooth Range is an arcuate zone of north-trending, closely spaced, west-dipping, imbricate thrust sheets that place Mississippian Madison Group carbonates above Cretaceous shales and sandstones. This structural regime is part of the cordilleran mountain belt of North America, which resulted from accretion of allochthonous terrains to the western edge of the North American continent.
Although the region has a general east–west increase in thrust displacement and related brittle deformation, a similar trend in penetrative deformation or the distribution of tectonic fabrics is not observed in the field or in the AMS results. The range of magnetic fabrics identified in each thrust sheet ranges from bedding controlled depositional fabrics to tectonic fabrics at a high angle to bedding
Determining finite strain: how far have we progressed?
One of the main aims in the field of structural geology is the identification and quantification of deformation or strain. This pursuit has occupied geologists since the 1800s, but has evolved dramatically since those early studies. The quantification of strain in sedimentary lithologies was initially restricted to lithologies of known initial shape, such as fossils or reduction spots. In 1967, Ramsay presented a series of methods and calculations, which allowed populations of clasts to be used as strain markers. These methods acted as a foundation for modern strain analysis, and have influenced thousands of studies. This review highlights the significance of Ramsay's contribution to modern strain analysis. We outline the advances in the field over the 50 years since publication of Folding and Fracturing of Rocks, review the existing limitations of strain analysis methods and look to future developments
Structure and internal deformation of thrust sheets in the Sawtooth Range, Montana: insights from anisotropy of magnetic susceptibility
Geological strain analysis of sedimentary rocks is commonly carried out using clast-based techniques. In the absence of valid strain markers, it can be difficult to identify the presence of an early tectonic fabric development and resulting layer parallel shortening (LPS). In order to identify early LPS, we carried out anisotropy of magnetic susceptibility (AMS) analyses on Mississippian limestones from the Sawtooth Range of Montana. The Sawtooth Range is an arcuate zone of north-trending, closely spaced, west-dipping, imbricate thrust sheets that place Mississippian Madison Group carbonates above Cretaceous shales and sandstones. This structural regime is part of the cordilleran mountain belt of North America, which resulted from accretion of allochthonous terrains to the western edge of the North American continent.Although the region has a general east-west increase in thrust displacement and related brittle deformation, a similar trend in penetrative deformation or the distribution of tectonic fabrics is not observed in the field or in the AMS results. The range of magnetic fabrics identified in each thrust sheet ranges from bedding controlled depositional fabrics to tectonic fabrics at a high angle to bedding
Prelithification and synlithification tectonic foliation development in a clastic sedimentary sequence
The current view regarding the timing of regionally developed penetrative tectonic fabrics in sedimentary rocks is that their development postdates lithification of those rocks. In this case, fabric development is achieved by a number of deformation mechanisms, including grain rigid body rotation, crystal-plastic deformation, and pressure solution. The latter is believed to be the primary mechanism responsible for the domainal structure of cleavage in low-grade metamorphic rocks. In this study we combine field observations with strain studies to characterize considerable (>50%) Acadian crustal shortening in a Devonian clastic sedimentary sequence from southwest Ireland. Despite these high levels of shortening there is a marked absence of the domainal cleavage structure and intraclast deformation that are expected with this level of deformation. Fabrics in these rocks are predominantly a product of rigid body rotation and repacking of extraformational clasts during deformation of a clastic sedimentary sequence before lithification was complete
Prelithification and synlithification tectonic foliation development in a clastic sedimentary sequence
The current view regarding the timing of regionally developed penetrative tectonic fabrics in sedimentary rocks is that their development postdates lithification of those rocks. In this case, fabric development is achieved by a number of deformation mechanisms, including grain rigid body rotation, crystal-plastic deformation, and pressure solution. The latter is believed to be the primary mechanism responsible for the domainal structure of cleavage in low-grade metamorphic rocks. In this study we combine field observations with strain studies to characterize considerable (>50%) Acadian crustal shortening in a Devonian clastic sedimentary sequence from southwest Ireland. Despite these high levels of shortening there is a marked absence of the domainal cleavage structure and intraclast deformation that are expected with this level of deformation. Fabrics in these rocks are predominantly a product of rigid body rotation and repacking of extraformational clasts during deformation of a clastic sedimentary sequence before lithification was complete
The provenance of the Devonian Old Red Sandstone of the Dingle Peninsula, SW Ireland; the earliest record of Laurentian and peri-Gondwanan sediment mixing in Ireland
The Lower Old Red Sandstone in southern Ireland is hosted in the Early Devonian Dingle Basin, which lies immediately south of the Iapetus Suture on the Dingle Peninsula, County Kerry. The basin developed as a post-Caledonian pullapart structure prior to Acadian deformation, which in turn was followed by end-Carboniferous Variscan deformation. Detrital zircon U–Th–Pb geochronology is complemented by mica Ar–Ar and apatite U–Pb geochronology to gain a comprehensive understanding of the provenance of the Lower Devonian Lower Old Red Sandstone of the Dingle Basin and assess contributions of major tectonic components (e.g. Laurentia, Ganderia). Sedimentary rocks in the Lower Old Red Sandstone have similar detrital zircon age distributions, which are dominated by c. 1.2 Ga zircons as well as late Neoproterozoic grains. This indicates a dominant contribution of detritus of Laurentian affinity as well as contributions from westerly and southerly derived Ganderian detritus. Caledonian uplift of the area north of the Iapetus Suture would have facilitated a large contribution of (peri-)Laurentian material. The Upper Old Red Sandstone on the Dingle Peninsula has a distinctly different detrital zircon character including few late Neoproterozoic zircons and abundant zircons of c. 1.05 Ga age, indicating sediment derivation only from Laurentia and no recycling from the Lower Old Red Sandstone
Constraining Basin Parameters Using a Known Subsidence History
Temperature history is one of the most important factors driving subsidence and the overall tectono-stratigraphic evolution of a sedimentary basin. The McKenzie model has been widely applied for subsidence modelling and stretching factor estimation for sedimentary basins formed in an extensional tectonic environment. Subsidence modelling requires values of physical parameters (e.g., crustal thickness, lithospheric thickness, stretching factor) that may not always be available. With a given subsidence history of a basin estimated using a stratigraphic backstripping method, these parameters can be estimated by quantitatively comparing the known subsidence curve with modelled subsidence curves. In this contribution, a method to compare known and modelled subsidence curves is presented, aiming to constrain valid combinations of the stretching factor, crustal thickness, and lithospheric thickness of a basin. Furthermore, a numerical model is presented that takes into account the effect of sedimentary cover on thermal history and subsidence modelling of a basin. The parameter fitting method presented here is first applied to synthetically generated subsidence curves. Next, a case study using a known subsidence curve from the Campos Basin, offshore Brazil, is considered. The range of stretching factors estimated for the Campos basin from this study is in accordance with previous work, with an additional estimate of corresponding lithospheric thickness. This study provides insight into the dependence of thermal history and subsidence modelling methods on assumptions regarding model input parameters. This methodology also allows for the estimation of valid combinations of physical lithospheric parameters, where the subsidence history is known