7,588 research outputs found

    Simple and inexpensive perturbative correction schemes for antisymmetric products of nonorthogonal geminals

    Get PDF
    A new multireference perturbation approach has been developed for the recently proposed AP1roG scheme, a computationally facile parametrization of an antisymmetric product of nonorthogonal geminals. This perturbation theory of second-order closely follows the biorthogonal treatment from multiconfiguration perturbation theory as introduced by Surjan et al., but makes use of the additional feature of AP1roG that the expansion coefficients within the space of closed-shell determinants are essentially correct already, which further increases the predictive power of the method. Building upon the ability of AP1roG to model static correlation, the perturbation correction accounts for dynamical electron correlation, leading to absolute energies close to full configuration interaction results. Potential surfaces for multiple bond dissociation in H2O and N-2 are predicted with high accuracy up to bond breaking. The computational cost of the method is the same as that of conventional single-reference MP2

    Demagnetization Borne Microscale Skyrmions

    Full text link
    Magnetic systems are an exciting realm of study that is being explored on smaller and smaller scales. One extremely interesting magnetic state that has gained momentum in recent years is the skyrmionic state. It is characterized by a vortex where the edge magnetic moments point opposite to the core. Although skyrmions have many possible realizations, in practice, creating them in a lab is a difficult task to accomplish. In this work, new methods for skyrmion generation and customization are suggested. Skyrmionic behavior was numerically observed in minimally customized simulations of spheres, hemisphere, ellipsoids, and hemi-ellipsoids, for typ- ical Cobalt parameters, in a range from approximately 40 nm to 120 nm in diameter simply by applying a field

    Comparing Spider (ARANEAE) Diversity in Remnant VS Restored Tallgrass Prairie in Eastern South Dakota

    Get PDF
    Anthropogenic influences on habitats has led to habitat destruction and species declines. The success of efforts to restore lost habitat has often been difficult to evaluate because of lost species, though groups of species (e.g., ants, spiders) have been used as bioindicators to gauge restoration success. Here we compare spider (Araneae) assemblages in remnant vs. restored tallgrass prairie in eastern South Dakota. Spiders were collected from June through August during 2012 and 2013, and each year from nine restored sites, ranging from 1 to 4 yrs after planting, and three remnant sites. Using single-factor ANOVA, we compared species richness of the varying-aged restoration sites with the remnant sites. For 2012, we found no significance between the restored sites and the remnant sites of any age. For 2013, we did find significance between the restoration sites and the remnant sites: 2 yr restored sites P = 0.004 (F₁,₃₈ = 9.366), 3 yr restored sites P = 0.023 (F₁,₄₀ = 5.574), and 4 yr restored sites P = 0.005 (F₁,₃₄ = 8.631). Thus, during the second year of our study we detected significant differences in species richness when comparing remnant vs. restored sites. These results indicate that that there is significant flux in the spider community soon after restoration, and longer-term studies are needed to assess restoration success

    Biochemical Properties of a Decoy Oligodeoxynucleotide Inhibitor of STAT3 Transcription Factor.

    Get PDF
    Cyclic STAT3 decoy (CS3D) is a second-generation, double-stranded oligodeoxynucleotide (ODN) that mimics a genomic response element for signal transducer and activator of transcription 3 (STAT3), an oncogenic transcription factor. CS3D competitively inhibits STAT3 binding to target gene promoters, resulting in decreased expression of proteins that promote cellular proliferation and survival. Previous studies have demonstrated antitumor activity of CS3D in preclinical models of solid tumors. However, prior to entering human clinical trials, the efficiency of generating the CS3D molecule and its stability in biological fluids should be determined. CS3D is synthesized as a single-stranded ODN and must have its free ends ligated to generate the final cyclic form. In this study, we report a ligation efficiency of nearly 95 percent. The ligated CS3D demonstrated a half-life of 7.9 h in human serum, indicating adequate stability for intravenous delivery. These results provide requisite biochemical characterization of CS3D that will inform upcoming clinical trials

    The influence of orbital rotation on the energy of closed-shell wavefunctions

    Get PDF
    The orbital dependence of closed-shell wavefunction energies is investigated by performing doubly-occupied configuration interaction (DOCI) calculations, representing the most general class of these wavefunctions. Different local minima are examined for planar hydrogen clusters containing two, four, and six electrons applying (spin) symmetry-broken restricted, unrestricted, and generalised orbitals with real and complex coefficients. Contrary to Hartree-Fock (HF), restricted DOCI is found to properly break bonds and thus unrestricted orbitals, while providing a quantitative improvement of the energy, are not needed to enforce a qualitatively correct bond dissociation. For the beryllium atom and the BH diatomic, the lowest possible HF energy requests symmetry-broken generalised orbitals, whereas accurate results for DOCI can be obtained within a restricted formalism. Complex orbital coefficients are shown to increase the accuracy of HF and DOCI results in certain cases. The computationally inexpensive AP1roG geminal wavefunction is proven to agree very well with all DOCI results of this study

    Fracture resistance of zirconia-composite veneered crowns in comparison with zirconia-porcelain crowns.

    Get PDF
    The objectives were to evaluate the fracture resistance and stress concentration in zirconia/composite veneered crowns in comparison to zirconia/porcelain crowns using occlusal fracture resistance and by stress analysis using finite element analysis method. Zirconia substructures were divided into two groups based on the veneering material. A static load was applied occlusally using a ball indenter and the load to fracture was recorded in Newtons (N). The same crown design was used to create 3D crown models and evaluated using FEA. The zirconia/composite crowns subjected to static occlusal load showed comparable results to the zirconia/porcelain crowns. Zirconia/composite crowns showed higher stress on the zirconia substructure at 63.6 and 50.9 MPa on the zirconia substructure veneered with porcelain. In conclusion, zirconia/composite crowns withstood high occlusal loads similar to zirconia/porcelain crowns with no significant difference. However, the zirconia/composite crowns showed higher stress values than the zirconia/porcelain crowns at the zirconia substructure
    • 

    corecore