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Abstract

The orbital dependence of closed-shell wavefunction energies is investigated by performing doubly-

occupied configuration interaction (DOCI) calculations, representing the most general class of these

wavefunctions. Different local minima are examined for planar hydrogen clusters containing two, four,

and six electrons applying (spin) symmetry-broken restricted, unrestricted and generalized orbitals

with real and complex coefficients. Contrary to Hartree-Fock (HF), restricted DOCI is found to

properly break bonds and thus unrestricted orbitals, while providing a quantitative improvement of

the energy, are not needed to enforce a qualitatively correct bond dissociation. For the beryllium

atom and the BH diatomic, the lowest possible HF energy requests symmetry-broken generalized

orbitals, whereas accurate results for DOCI can be obtained within a restricted formalism. Complex

orbital coefficients are shown to increase the accuracy of HF and DOCI results in certain cases.

The computationally inexpensive AP1roG geminal wavefunction is proven to agree very well with all

DOCI results of this study.
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Introduction

There are many ways how the energy of a quantum chemical calculation can be improved by hierar-

chically refining the Hartree-Fock (HF) wavefunction towards the full configuration interaction (CI)

limit. Besides the very popular single-reference post-HF methods such as many-body perturbation

theory or the coupled-cluster approximation, there is also the realm of multireference wavefunctions

that include more and more determinants, be it as a truncated CI or in the form of a complete ac-

tive space calculation, to reach full CI.[1] Whereas the former family of methods rely on a reference

determinant and hence traditionally engage canonical orbitals as obtained by an initial HF calcula-

tion, the energy of the latter wavefunctions is known to be orbital dependent. For this reason, the

orbitals of a multireference method are usually optimized together with the expansion coefficients of

the wavefunction in a multiconfiguration self-consistent field (MCSCF) procedure.[2]

One particular type of multireference method are wavefunctions which employ only closed-shell

configurations in the determinantal expansion.[3–6] The most general closed-shell wavefunction is ob-

tained by performing a doubly-occupied configuration interaction (DOCI) calculation.[7] The number

of expansion coefficients drops from
(

2m
n

)

for full CI to
(

m
n/2

)

for DOCI, where m and n denote the

number of spatial orbitals and electrons, respectively. When these coefficients are determined varia-

tionally, the resulting DOCI energy is a lower bound to all other normalized closed-shell wavefunction

energies that use the same orbitals.

DOCI was thoroughly studied in the pioneering days of quantum chemistry.[7–10] Later on, the

method was abandoned due to its factorial scaling until it recently experienced a revival for various

reasons, be it as a benchmark for other closed-shell methods or as a starting point for even more

general wavefunctions.[6, 11–15] It was realized that DOCI is a particular rung on the ladder leading

from HF to full CI: it is the most elaborate closed-shell wavefunction possible, and at the same time

also the lowest level in a hierarchical concept called seniority, which stepwise leads to full CI. The

seniority of a wavefunction is defined as the highest number of unpaired electrons that appear in

the determinantal expansion.[12] In this hierarchy, DOCI is a seniority zero wavefunction and can

be completed to full CI by gradually including determinants with maximally two unpaired electrons
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(seniority two), then four (seniority four) etc. until full CI is reached. It should be noted that

the seniority hierarchy is not size-extensive and hence concepts from post-HF methods should be

borrowed to design size-consistent extensions to DOCI. Although seniorities greater than zero are

not size-extensive, DOCI itself is, just like HF is size-extensive whereas its generalization to, say

CISD, is not.

DOCI, like all other closed-shell methods, is orbital dependent since all open-shell determinants

are neglected and optimal orbitals need to be found along with optimal expansion coefficients to

fully minimize the energy. Unlike HF, the orbital optimization for DOCI is plagued by a factorial

number of local minima, many of which are close in energy. This is a general problem of MCSCF,

but often is negligible in practice since the minimum found with a reasonably chosen initial orbital

guess is usually very close in energy to the global minimum.[16–19] In the present study, we analyze

the different minima found for DOCI when the orbitals of small hydrogen clusters and other systems

are optimized variationally. Such hydrogen model systems are frequently used to address similar

questions.[20, 21]

Furthermore, we investigate the changes introduced, when the orbitals are allowed to break the

symmetry of the Hamiltonian.[22, 23] For HF, it is well-established that a violation of the spin

operators S2 and Sz, or the complex conjugation operator, diversifying HF into a restricted (RHF),

unrestricted (UHF), or generalized (GHF) variant with real or complex orbital coefficients, lead to

improved energies for certain molecules.[24, 25] The same symmetry-breaking cascade can be

applied to any other type of closed-shell wavefunction giving rise to the terms RDOCI,

UDOCI and GDOCI. For RDOCI, the spatial parts of α- and β-orbitals are identical and

the electron pairs must reside within the same spatial orbital. (An alternative way would

be to allow also other pairing patterns, which would correspond to restricted open-shell

HF theory in some sense.) Allowing α- and β-orbitals to have different spatial shapes

(but still requesting each electron pair to consist of an α- and a β-electron) breaks the

S2 symmetry and leads to the UDOCI method. Finally, GDOCI as the most general

case engages fully flexible orbitals of mixed spin-character (as linear combinations of α-
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and β-orbitals) breaking also the Sz symmetry. RDOCI, UDOCI and GDOCI in their real

and complex implementations are studied here for the beryllium atom, the BH diatomic and the

hydrogen clusters.

DOCI, like full CI, is a method whose computational cost grows factorially with system size and

thus never will be affordable for molecules containing more than a few dozens of active electrons.

Hence one might wonder why this method deserves such a detailed examination. The reason is

that a recently proposed geminal wavefunction method, termed AP1roG, has shown results virtually

indistinguishable from DOCI in all the cases investigated so far.[14] AP1roG is size-consistent and

scales quartically with the number of electrons, such that it has all prerequisites to be applied to large

systems, in particular strongly correlated materials, where single-reference methods generally fail. For

this however, the effects of orbital rotation for closed-shell wavefunctions have to be understood. Due

to the near equivalence of DOCI and AP1roG energies, we have chosen to present all the results only

for DOCI and to summarize the errors between both methods in a final section.

The numerical calculations of this study all employ an atomic natural orbital (ANO) basis set.[26]

The orbital optimization was done by a stochastic random-walk algorithm with a strict

energy lowering acceptance criterion. The Hamiltonian matrix elements and molecular inte-

grals, as well as the full CI reference results were taken from calculations with the dalton quantum

chemistry package.[27]

Two-electron systems

To start, we briefly consider two-electron systems, prototypically represented by the hydrogen

molecule. Its dissociation into two infinitely separated hydrogen atoms is the textbook example

par excellence for the failure of RHF.[28] Here, the only way to distribute the two electrons equally

between both hydrogens is to rotate the localized 1s atomic orbitals to symmetry obedient positive

and negative linear-combinations (σ and σ∗). Since within such orbitals the electrons repel each

other even at infinite bond separation, the RHF energy can never be as low as twice the energy of a

single hydrogen atom.
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The more intuitive choice of having localized 1s orbitals to represent remote atoms with no

meaningful interactions left between them, is prohibited by the restriction of the method to always

put two electrons (one of α- and one of β-spin) into the same spatial orbital. Thus, using localized

orbitals results in calculating the energy of H+ and H− instead, which eventually coincides with the

RHF energy of delocalized orbitals at infinite distance.

In UHF, α- and β-electrons are allowed to occupy different spatial orbitals, which are optimized

individually such that the resulting energy is in any case lower or equal to RHF. For H2, this means

that after an initial region near equilibrium, which is properly described by restricted σ-orbitals, α-

and β-orbitals start to adopt distinct shapes, eventually localizing the α-orbital on one hydrogen

atom and the β-orbital on the other. Although the energy of UHF is guaranteed to improve over

RHF, there is a price to pay in the form of spin contamination, since determinants of unrestricted

orbitals are no longer eigenfunctions of the S2 operator. For converged solutions, the expectation

value 〈S2〉 can be calculated to assess how severe the deviations from a pure spin state are. For GHF,

the Sz symmetry is also broken as these generalized orbitals do not clearly distinguish between α-

and β-electrons.

Unlike HF, DOCI can treat two-electron systems exactly and thus symmetry-breaking is not

useful. The optimal orbitals of DOCI in this case coincide with the natural orbitals (NO) of full CI

and so does the energy. This also means that the optimal DOCI orbitals of two-electron systems will

be delocalized, if the NOs are. In the case of H2, the DOCI orbitals leading to the lowest energy are

consequently of σ and σ∗ shape.

Four-electron systems

H4 square

There are several ways how two H2 moieties can be combined to a H4 cluster. Especially the planar H4

structures have been extensively studied in the literature.[20, 21, 29, 30] The D4h structure deserves

particular attention. This conformation is a very simple antiaromatic system, characterized by
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two degenerate NOs exactly at the Fermi level. Assuming a square of length 2 a.u. and a minimal

ANO basis, the full CI energy evaluates to −1.9877 a.u. and the NOs take symmetry adapted shapes

with occupation numbers Ag : 1.944, B2u : 1.000, B3u : 1.000 and B1g : 0.056. If a RDOCI is

performed, there is a number of stationary points for which the orbital rotation gradient is zero, as

outlined in Figure 1, none of which exactly match the full CI occupation numbers. If real orbital

coefficients are used, three minima are found (orbital sets V, C and DC) of which the vertical

solution V is the global minimum, which also exists in a horizontal version (orbitals rotated by 90

degrees). For DOCI, the canonical HF orbitals correspond only to a local minimum indicating that

the spatial symmetry must be broken in order to find a lower energy solution. The tendency of DOCI

towards localized orbitals was already observed in an earlier study.[14] If complex orbitals are used,

the same stationary points are found, but some local minima and maxima disappear. For example,

theDC solution is now a saddle point since the imaginary distortion towards the canonicalC solution

lowers the energy. In general, the use of complex orbital coefficients is encouraged because, if not

reducing the number of local minima, it smooths at least the optimization surface, such that orbital

convergence is facilitated. For RHF, complex orbitals even lower the single-determinant energy from

−1.8480 a.u. to −1.8585 a.u.. Such an improvement of the ground-state energy by virtue of complex

orbitals is neither found for UHF or GHF, nor for any of the DOCI variants.

Considering the lowest four stationary points in Figure 1, it is apparent that they all possess

the same single-determinant energy ESD, which is identical to the RHF energy with real coefficients.

Since orbital rotations within the occupied and virtual orbital spaces do not affect the HF energy,

all rotations between C,VC, CV and V leave ESD unchanged. EDOCI on the other hand depends

on these orbital rotations, as is shown in Figure 2. This is the reason that multiple minima exist

for DOCI, but not for HF. The solutions C and V in RDOCI are clearly separated from each other

since orbitals cannot be interchanged without crossing an energy barrier.

Proceeding to unrestricted orbitals, the number of minima for the hydrogen square does not

decrease. In fact, there are three distinct minima found for UDOCI which are stable for both, real

and complex orbital coefficients. The extension from UDOCI to GDOCI does not lead to any changes
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for this particular molecule, such that the same three minima found for real UDOCI orbitals persist

even if complex GDOCI orbitals are applied. These minima do not possess the highly symmetric

orbital shapes found for RDOCI. Instead, the orbitals are linear combinations between canonical (C)

and diagonal orbitals (D), typically two α- and two β-orbitals of pure state (C or D) and the other

four orbitals mixtures thereof (x·DC+
√
1− x2·D). Table 1 gives an overview of these minima and

the probability to find them when optimizing a randomly chosen initial guess of complex orbitals.

The global minimum, which is found in nearly all cases, still possesses two degenerate orbital pairs,

one almost full, the other almost empty. In about one percent of the cases however, there is a

local minimum significantly higher in energy, which has nearly the correct orbital occupation pattern

with respect to full CI, yet is even higher in energy than the single-determinantal UHF method.

This highlights the importance of a good initial guess for UDOCI orbitals, since otherwise an entire

calculation can be trapped in a local minimum with an energy inferior to UHF. Considering 〈S2〉

as a measure for spin contamination, one finds that UHF and the global minimum of UDOCI are

very similar, with a slightly reduced value for the latter. On the other hand, both local minima of

UDOCI, in particular the energetically unfavourable one, are more spin contaminated than UHF and

hence possess more triplet character.

Resizing and Distorting H4

When hydrogen clusters are studied in literature, the interatomic distance is usually chosen to be

2 a.u., which is larger than the equilibrium structure found for H2. This is to enhance the effects

of strong correlation, which are more expressed for elongated bonds. Upon variation of the side

length of the square, the orbitals of a RDOCI calculation undergo a number of changes, with local

minima appearing and disappearing as illustrated in Figure 3. It also shows the probability of

ending up with a certain solution when randomly chosen initial orbitals are optimized

by variationally minimizing the DOCI energy. Overall, the orbital set leading to the lowest

energy is V, which is also found with the highest probability at all distances. However, for small side

lengths (< 1.9 a.u.) the canonical set C is slightly lower in energy. In the region between 2.6 a.u.

8



and 3.0 a.u., the barrier between V and C disappears leaving V as the only minimum. After that, a

short-lived minimum of reduced symmetry, similar to the UDOCI orbitals mentioned above, appears,

which then unifies with the diagonal D minimum for distances > 3.5 a.u.. At infinite separation, the

D and V orbitals both return the correct energy of four isolated hydrogen atoms with a probability

distribution of 1:2, since the V orbitals possess a vertical and a horizontal variant.

In Figure 4 the global minimum for RDOCI is compared to UDOCI, RHF, UHF, and the full CI

singlet and triplet ground state energies. In the case of RHF, the use of complex orbital coefficients

leads to a slight energy decrease. In all other cases, results for real and complex orbitals are identical.

Furthermore, the GHF/GDOCI solutions coincide with UHF/UDOCI at all distances. In the RDOCI

curve of Figure 4, the change of the minimum energy basis at 1.9 a.u. can easily be spotted as a

discontinuity of the energy. A similar, yet less discernible discontinuity exists for UDOCI at 2.3 a.u.

that also leads to a jump of 〈S2〉. The evolution of 〈S2〉 for UHF and UDOCI indicates that the

dissociation into four isolated hydrogen atoms is realized as a triplet state. Consequently, both energy

curves follow more closely the full CI triplet curve than the singlet curve. In the region of small

interatomic distances, the energy of UDOCI (and to a lesser extent also UHF) is even

lower than the singlet full CI solution clearly proofing the substantial triplet character

of these unrestricted wavefunctions.

Figure 5 shows the behaviour of symmetry-broken orbitals in rectangular H4 systems. Instead of

rescaling the entire H4 square, one side of the rectangle stays now fixed at 2 a.u., whereas the length

of the other side is variable. Such a distortion allows the orbitals to form energetically preferred H2

bonds in either horizontal or vertical direction, depending on the relative magnitude of the fixed and

variable sides of the rectangle. Due to these designated H2 fragments within H4, the results obtained

with restricted orbitals improve and make unrestricted orbitals only necessary in the region of nearly

equal bond lengths, as the curves for HF and DOCI in Figure 5 illustrate. However, the range of

this region is larger for HF, such that the overall need of unrestricted orbitals is less pronounced for

DOCI. The aforementioned energy improvement of complex RHF over real RHF orbitals exists only

for a very narrow region at the near square geometry (2 ± 0.05 a.u.) and completely disappears for
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RDOCI.

Another way of distorting the H4 square is to shear two opposite sides such that the four hydrogen

atoms form a parallelogram of constant height.[31] Taking the prototypical square of side length

2.0 a.u., the shearing leads to parallelograms of base length and height 2.0 a.u., for which energies

and 〈S2〉 are reported in Figure 6. Similar to the rectangle, unrestricted orbitals improve the energies

only around the square geometry and UHF is beneficial for a longer range than UDOCI. Further,

the UDOCI ground state undergoes an abrupt change of state at a displacement length of 0.37 a.u.,

visible as a discontinuity of 〈S2〉, while following the full CI energy curve very closely.

Beryllium

For all forms of H4 investigated here, the generalized GHF and GDOCI methods always coincide with

UHF and UDOCI. An exemplary case of a system with a GHF energy lower than the corresponding

UHF energy is the beryllium atom, at least for small basis sets.[25] Table 2 summarizes the char-

acteristic quantities of Be obtained with different methods. For HF, the energy drops from restricted

to unrestricted and finally generalized orbitals at the expense of introducing spin contamination. The

reason for the lower UHF and GHF energies is the possibility to move some of the electronic charge

from s-orbitals into p-orbitals, which is prohibited for RHF due to symmetry restrictions. However,

this charge shift is achieved by artificially breaking the spin symmetry and hence is energetically not

very efficient. Note that for optimized GHF orbitals the Sz expectation value is zero although every

individual orbital has a mixed α and β character.

For DOCI, the p-orbitals naturally can be populated simply by including determinants with p-

orbitals in the CI expansion. It is therefore not necessary to break spin symmetry at all, and neither

symmetry-broken orbitals nor the use of complex coefficients leads to any changes of the energy

obtained with real RDOCI orbitals. It is thus sufficient to use restricted orbitals for such problems.

In fact, beryllium as a quasi two-electron system (due to the energetically low-lying core electrons)

is modelled nearly perfectly by DOCI in comparison to full CI.
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Six-electron systems

H6 hexagon

Hexagonal H6 is a frequently used toy system to model aromaticity. Unlike for the H4 square, RHF is

capable to describe H6 at short distances, since the distinction between occupied and virtual orbitals

is completely unambiguous. Assuming a hexagonal side length of 2.0 a.u., orbital optimized RDOCI

finds three energy minima reported in Figure 7. Although the N set strongly resembles the canonical

HF orbitals (that are identical with the full CI natural orbitals due to symmetry), this is a peculiarity

of the near equilibrium geometry and is different for side lengths > 2.0 a.u. The discrepancies between

both can be seen as subtle variations of the orbital occupation numbers and a single-determinant

energy slightly higher than for RHF. Just like in the H4 square, the formation of localized bonding

σ and antibonding σ∗-orbitals leads also to a lower DOCI energy for H6. Different solutions emerge,

depending on the connectivity of these localized orbital pairs. Two of them (D and T) are found

to be stable with respect to orbital optimization. Figure 8 shows the evolution of the N, D and T

minima when the size of the hexagon is changed. For short bonds, N is the global RDOCI minimum.

It is then replaced by T, for distances > 1.7 a.u. up to complete dissociation.

Contrary to the antiaromatic H4 square, unrestricted orbitals not always lead to lower energies for

H6. For side lengths between 1.9 a.u. and 2.6 a.u. UDOCI coincides with the T orbitals of RDOCI.

For larger values, UDOCI provides a solution lower in energy than RDOCI. Both eventually coincide

at infinite length. For compressed H6, there appears again a lower UDOCI solution that only exists

using complex orbital coefficients. From Figure 9 can be seen that for UHF, no such energy lowering

is possible at short side lengths, so that real and complex coefficients provide identical solutions for

RHF and UHF over the entire dissociation range. The complex UDOCI energy curve evolves largely

parallel to the N orbital set and thus disappears, once the real, restricted T solution is energetically

favourable (Figure 8).

The analysis of 〈S2〉 in Figure 9 shows that UDOCI is again less prone to spin contamination

than UHF. At infinite distances UHF approaches an 〈S2〉 of 3 a.u. and UDOCI 2 a.u. respectively.
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For short distance H6, spin contamination is very small for the complex UDOCI solution, but the

change of orbitals at 1.9 a.u. is still clearly visible as a discontinuity of 〈S2〉.

Table 3 shows characteristic points on the energy curves in Figure 9. Besides the side length rmin

that leads to the minimal energy of the hexagonal H6 structure, there is also the critical radius rc

reported, at which a distortion into pairs of hydrogen (forming (H2)3 while retaining each atom’s

distance to the center) is energetically favourable. Hexagons with r < rc prefer D6h symmetry,

whereas for r > rc dimerization occurs. From the orbital symmetries of Figure 7, it is clear that

only the N and D orbitals can possess the hexagonal structure as a stationary point, whereas the

T orbitals have a cusp there (created by the two different potential energy curves for either way

of pairing neighboring H atoms, each having a nonzero slope at the hexagonal structure). The T

orbitals themselves thus never predict any D6h structure to be stable. However, at small enough

distances, the transformation of T into N is not only energetically favourable, but also possible

without passing an energy barrier such that D6h is the preferred geometry at fixed small radii.

BH dissociation

The dissociation of BH into two isolated atoms of boron and hydrogen is another case in which the

application of generalized orbitals with mixed α and β character leads to improved HF energies.[25]

The problem with RHF is, analogous to Be in Table 2, that due to symmetry restrictions all electrons

must occupy the rotationally invariant σ-orbitals, although some gain in energy would be possible

by populating also the π-orbitals. The breaking of spin symmetry allows exactly that and leads to

improved UHF and GHF results, as illustrated in Figure 10. In contrast to the isolated Be atom,

in BH there is also simultaneous bond breaking, which requests the UHF functionality too, such

that after a distance of 3.5 a.u. UHF and GHF coincide and the wavefunction changes character

afterwards. This can be spotted noticing the abrupt changes of 〈S2〉 and the drop of the electron

density in the π-orbitals to zero. RDOCI on the other hand all by itself correctly describes bond

breaking as well as the non-zero density in the π-orbitals. Consequently, the solutions for symmetry-

broken UDOCI and GDOCI orbitals converge to a RDOCI solution and symmetry-breaking is never
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necessary for BH over the entire range of bond lengths. Furthermore, the RDOCI energy is constantly

very close to full CI.

Geminal wavefunctions

The AP1roG wavefunction is an antisymmetric product of non-orthogonal geminals.[14] The energies

obtained with this method usually differ very little from DOCI energies, such that on the scale of the

presented figures, no deviation could be spotted. Instead, the energy differences between AP1roG

and DOCI are summarized in Table 4. It is found that even the largest deviations stay in the sub-

milli-Hartree regime. They typically occur in the region of bond breaking, where the multireference

character of the wavefunction is particularly strong. But even in the worst case (H6 dissociation), the

maximal difference is only about half a milli-Hartree. Overall, the AP1roG wavefunction is certainly

capable of mimicking DOCI energies in great detail.

The excellent agreement between DOCI and AP1roG energies is only observed when

the set of orbitals correspond to a local energy minimum. In Figure 11, the energy

difference between the DOCI and AP1roG method is given for the H4 square as a

function of the same orbital rotation parameters as in Figure 2. Clearly visible, the

close match of the energies is lifted already by small distortions from a local orbital

minimum. Although DOCI and AP1roG share the same stationary points, the saddle

points CV and VC do not have such an energy coalescence. The energy difference for

these points lies around 0.0002 a.u. which is about ten times higher (and of opposite

sign) than ∆E for V. Note that due to orbital symmetry, ∆E is exactly zero for C.

Although the agreement of DOCI and AP1roG is generally the best for orbitals

representing local minima, ∆E stays small enough on the entire orbital rotation surface,

such that a direct optimization of AP1roG orbitals is a straightforward task (instead

of taking the orbitals from a DOCI calculation, as it is done in this study). This is a

necessary requirement if AP1roG should become a practical stand-alone method.

When optimizing AP1roG orbitals directly, allowing the orbital coefficients to be
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complex numbers, one consideration is to run into problems with complex energy solu-

tions due to the non-hermiticity of the projected Schrödinger equation. This is, in fact,

a known problem in coupled-cluster theory and complex energy solutions are possible

even for purely real orbitals.[32] Since AP1roG is a special case of coupled-cluster with

only pair amplitudes different from zero,[14] one should not encounter any new type of

problem that are not already present in coupled-cluster theory. Within this study, all

the AP1roG energies obtained with complex orbitals were purely real. Another ben-

efit of AP1roG being a particular coupled-cluster method, is the ease of developing a

stable and efficient numerical orbital optimizer for AP1roG, since all the techniques of

orbital-optimized coupled-cluster theory can be applied in a straightforward manner.[1]

This will be the topic of a future publication.

Conclusions

The DOCI approach, as the best possible closed-shell wavefunction, and likewise AP1roG, as a com-

putationally inexpensive, yet very accurate approximation to DOCI, overcome many drawbacks of

single-reference methods. In particular, these methods are able to account for strong electron corre-

lation and thus can predict bond separation reactions with great accuracy. The main disadvantages

are their orbital dependence and the possibility that a variational optimization of the orbitals leads to

a local energy minimum. Multiple solutions exist already for a minimal basis set H4 square molecule.

As a remedy, localized orbitals should be used as initial guesses for an orbital optimization proce-

dure, since the global energy minimum is usually characterized by orbitals localized on maximally two

atoms (forming bonding and antibonding orbital pairs). Only for compressed molecular structures,

the delocalized canonical orbitals possess a lower energy solution, which normally does not differ

very much from the energy obtained with paired orbitals. The existence of an optimized solution

with delocalized orbitals is nevertheless an important prerequisite to retain molecular point group

symmetries. It enables DOCI, and in particular also AP1roG, to properly describe the symmetry of

molecules like benzene.
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Considering symmetry-broken orbitals, the need for an unrestricted formulation of DOCI is less

urgent than for HF. Since RDOCI describes bond dissociation qualitatively correct already, its gener-

alization to UDOCI only leads to improved energies if several equivalent pairing schemes are possible

(H4 square, H6 hexagon). Another reason in HF to use unrestricted (and even generalized) orbitals

is the capability of UHF and GHF to populate the orbitals of different spatial symmetries with frac-

tional numbers, whereas RHF enforces integer sums for every symmetry block. Such considerations

are completely void for DOCI, and consequently the energy of the Be atom and the BH dissociation

curve are predicted completely satisfactorily with RDOCI. For all systems studied here, GDOCI as

the most generalized DOCI approach never leads to a lowering of the energy, and can always be

recast as UDOCI.

Finally, the merits of complex orbitals should be highlighted. In two cases, namely the H4 square

RHF and the H6 UDOCI energy, solutions with complex orbitals lead to lower energies than it is

possible for real coefficients. But also in systems where the energy does not alter with the introduction

of complex orbitals, it is still advantageous to use them because of the smoother energy surfaces and

the facilitated convergence of the orbital optimization procedure.
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P. Löwdin, E. Brändas, and E. Kryachko, volume 1, pages 67–139, Kluwer Academic Publishers,

Dordrecht, 2003.

[26] P.-O. Widmark, P.-A. Malmqvist, and B. O. Roos, Theor. Chim. Acta 77, 291 (1990).

[27] DALTON, a molecular electronic structure program, Release 2.0 (2005), see http://www.kjemi.

uio.no/software/dalton/dalton.html., 2005.

[28] A. Szabo and N. S. Ostlund, Modern Quantum Chemistry : Introduction to Advanced Electronic

Structure Theory, Macmillan, New York, 1982.

[29] J. Paldus, P. Piecuch, L. Pylypow, and B. Jeziorski, Phys. Rev. A 47, 2738 (1993).

17



[30] K. Kowalski and K. Jankowski, Phys. Rev. Lett. 81, 1195 (1998).

[31] E. Neuscamman, CoRR arXiv:1308.5297 (2013).

[32] J. Paldus, M. Takahashi, and R. W. H. Cho, Phys. Rev. B 30, 4267 (1984).

18



Tables

Table 1. Unrestricted DOCI energies of the three minimal energy orbital sets for the H4 square,

orbital occupation numbers (ni) and expectation value 〈S2〉, as well as the probability of finding

each minimum when starting the optimization with random complex orbitals (based on 10’000 cal-

culations).

Method E/a.u. n1 n2 n3 n4 〈S2〉/a.u. Probability

UDOCI -1.9767 1.988 1.988 0.012 0.012 1.053 98.89%

-1.9664 1.998 1.988 0.012 0.002 1.155 0.25%

-1.9406 1.997 1.000 1.000 0.003 1.500 0.85%

UHF -1.9637 2.000 2.000 0.000 0.000 1.085 100%
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Table 2. Energy, total electron density in all p-orbitals and spin expectation values 〈S2〉 and 〈Sz〉 for

the beryllium atom obtained with complex restricted, unrestricted and generalized optimized orbitals

using an ANO(3s1p) basis set.

Method E/a.u.
∑

np 〈S2〉/a.u. 〈Sz〉/a.u.

full CI -14.617571 0.19597

RHF -14.572837 0.00000

UHF -14.573161 0.06387 0.1237

GHF -14.573190 0.06953 0.1358 0.0000

RDOCI -14.617515 0.19595

UDOCI -14.617515 0.19595 0.0000

GDOCI -14.617515 0.19595 0.0000 0.0000
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Table 3. Side length r and corresponding energies E for characteristic points of a minimal basis set

H6 hexagon. Reported are the minimum of the potential energy curve (rmin and Emin), as shown

in Figure 9, and the critical side length (rc and Ec), after which the D6h molecular point group

symmetry is unstable with respect to D3h (hydrogen dimerization).

Method rmin/a.u. Emin/a.u. rc/a.u. Ec/a.u.

FCI 2.004 -3.2793 1.627 -3.1934

HF 1.941 -3.2043 1.584 -3.1112

RDOCI 1.981 -3.2438 1.624 -3.1634

UDOCI 1.981 -3.2438 1.652 -3.1816
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Table 4. Deviation of the AP1roG geminal method from DOCI. The error (∆E = EAP1roG−EDOCI) is

summarized by the root-mean-square deviation over the range reported in the corresponding figures,

the largest overestimation (∆Emax) of DOCI by AP1roG, and the largest underestimation (∆Emin)

together with the distances, at which these occur. Energies are given in milli-Hartree, distances in

Bohr.

System Method Ref. Ermsd rmax ∆Emax rmin ∆Emin

H4 square RAP1roG Fig. 4 0.0833 1.89 0.000 3.62 -0.132

H4 square UAP1roG Fig. 4 0.1225 2.34 0.035 3.92 -0.210

H4 rect. RAP1roG Fig. 5 0.0084 0.00 0.000 2.00 -0.021

H4 rect. UAP1roG Fig. 5 0.0086 2.00 0.020 2.25 -0.024

H4 para. RAP1roG Fig. 6 0.0185 1.04 0.027 0.00 -0.021

H4 para. UAP1roG Fig. 6 0.0195 1.04 0.027 0.63 -0.021

H6 hex. RAP1roG Fig. 9 0.2570 2.36 0.039 3.63 -0.514

H6 hex. UAP1roG Fig. 9 0.2747 1.96 0.066 3.75 -0.495

BH RAP1roG Fig. 10 0.1717 5.43 0.250 1.02 0.040
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Figure 1: The stationary points of the RDOCI energy with respect to orbital variation. Every

diagram contains the orbital shapes, occupation numbers, characterization of the stationary point

for real and complex orbital rotations, the total DOCI energy, as well as the single-determinant

energy (occupying the two orbitals with highest occupation number).
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Figure 2: RDOCI energy as a function of orbital rotations between the two occupied and

the two virtual canonical HF orbitals connecting the four stationary points V, C, CV

and VC in the H4 square. The spacing between two contours corresponds to an energy

change of 0.005 a.u. with a dark background indicating regions of higher energy. The

pattern repeats after rotation about 90 degrees in either direction.
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Figure 3: RDOCI energies of the H4 square for different sets of optimized orbitals as a function of the

interatomic distance. The nomenclature for the orbitals is given in Figure 1. The inset is a zoom-in

at the region where two local minima coalesce into one. The dotted lines represent the continuation

of the C, D and DC energies, where these orbital sets are no minima. The lower panel illustrates the

likelihood to converge to a particular orbital minimum when the initial orbitals are chosen randomly

(based on 1000 calculations per data point).
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Figure 4: Energy difference from the full CI singlet energy (top) and 〈S2〉 of UHF and UDOCI

solutions (bottom) for minimal basis set H4 as a function of the interatomic distance. For HF, the

three energy curves correspond to real RHF, complex RHF and real UHF optimized orbitals (in the

order of decreasing energy). For DOCI, results for optimized real RDOCI and real UDOCI orbital

coefficients are shown.
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Figure 5: Energy (top) and 〈S2〉 (bottom) for a minimal basis set H4 rectangle with one side length

fixed at 2 a.u.. Close to the square geometry, HF diversifies into three curves for real RHF, complex

RHF and real UHF orbitals (in the order of decreasing energy) whereas DOCI splits into two curves

(real RDOCI and real UDOCI).
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Figure 6: Energy (top) and 〈S2〉 (bottom) for a minimal basis set H4 parallelogram with base length

and height 2 a.u.. The same splitting of the orbitals into real RHF, complex RHF real UHF, real

RDOCI and real UDOCI applies as in Figure 5.
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Figure 7: Schematic representation (nomenclature, shape and occupation numbers) of the three

orbital sets leading to minimal RDOCI energies for the H6 hexagon with side length 2.0 a.u. applying

an ANO(1s) basis set. On the bottom, the comparison is made to full CI NO populations and energy,

as well as to the RHF energy.
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Figure 8: DOCI energies of different optimized orbitals for a minimal basis set H6 hexagon as a

function of the side length. The energy is given with respect to full CI. Besides the three restricted

DOCI solutions described in Figure 7, also the lowest possible DOCI energy is shown, obtained by

an UDOCI calculation with complex orbital coefficients.
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Figure 9: Energy (top) and 〈S2〉 (bottom) for a minimal basis set H6 hexagon as a function of the

side length. For enlarged bonds, HF and DOCI split into a restricted and an unrestricted curve. For

compressed bonds, a UDOCI solution of lower energy is found when complex orbital coefficients are

applied.
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Figure 10: Energies (top), sum of the electron density in the four π-orbitals (middle) and 〈S2〉

(bottom) for the BH bond dissociation using a minimal ANO basis set. For a better distinction of the

energy curves, relative energies are also presented according to the definitions ∆EUHF = EUHF−ERHF,

∆EGHF = EGHF − ERHF and ∆EDOCI = EDOCI − EFCI.
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Figure 11: The error of AP1roG relative to DOCI (∆E = EAP1roG−EDOCI) for the H4 square

with side length 2 a.u. ploted for the same orbitals as in Figure 2. The spacing between

two contours corresponds to an energy change of 5 · 10−5 a.u. with a dark background

indicating regions where EAP1roG > EDOCI. The thick line indicates the contour of ∆E = 0.
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