2,627 research outputs found

    Habitat Management to Reduce Human Exposure to Trypanosoma cruzi and Western Conenose Bugs (Triatoma protracta).

    Get PDF
    Chagas disease, which manifests as cardiomyopathy and severe gastrointestinal dysfunction, is caused by Trypanosoma cruzi, a vector-borne parasite. In California, the vector Triatoma protracta frequently colonizes woodrat (Neotoma spp.) lodges, but may also invade nearby residences, feeding upon humans and creating the dual risk of bite-induced anaphylaxis and T. cruzi transmission. Our research aimed to assess T. cruzi presence in woodrats in a previously unstudied northern California area, statistically evaluate woodrat microhabitat use with respect to vegetation parameters, and provide guidance for habitat modifications to mitigate public health risks associated with Tr. protracta exposure. Blood samples from big-eared woodrats (N. macrotis) trapped on rural private properties yielded a T. cruzi prevalence of 14.3%. Microhabitat analyses suggest that modifying vegetation to reduce understory density within a 40 meter radius of human residences might minimize woodrat lodge construction within this buffer area, potentially decreasing human exposure to Tr. protracta

    The Divergence of Black and white Marriage Patterns

    Get PDF

    “Save Our History!” Collaborating to Preserve the Past at UMass Boston

    Get PDF
    Sparked by the 50th anniversary of the founding of the University of Massachusetts Boston in June 1964, University Archives and Special Collections (UASC) staff in the Joseph P. Healey Library collaborated with departments across campus to carry out a wide range of initiatives, all focused on locating, accessioning, preserving, and sharing the physical evidence of the university’s history. This poster outlines the various collecting activities, outreach methods, digitization projects, and dogged detective work that resulted in the addition of more than 2,500 linear feet of unique historic materials to the University Archives, as well as a number of well-received public events and exhibitions

    A Translational Murine Model of Sub-Lethal Intoxication with Shiga Toxin 2 Reveals Novel Ultrastructural Findings in the Brain Striatum

    Get PDF
    Infection by Shiga toxin-producing Escherichia coli causes hemorrhagic colitis, hemolytic uremic syndrome (HUS), acute renal failure, and also central nervous system complications in around 30% of the children affected. Besides, neurological deficits are one of the most unrepairable and untreatable outcomes of HUS. Study of the striatum is relevant because basal ganglia are one of the brain areas most commonly affected in patients that have suffered from HUS and since the deleterious effects of a sub-lethal dose of Shiga toxin have never been studied in the striatum, the purpose of this study was to attempt to simulate an infection by Shiga toxin-producing E. coli in a murine model. To this end, intravenous administration of a sub-lethal dose of Shiga toxin 2 (0.5 ηg per mouse) was used and the correlation between neurological manifestations and ultrastructural changes in striatal brain cells was studied in detail. Neurological manifestations included significant motor behavior abnormalities in spontaneous motor activity, gait, pelvic elevation and hind limb activity eight days after administration of the toxin. Transmission electron microscopy revealed that the toxin caused early perivascular edema two days after administration, as well as significant damage in astrocytes four days after administration and significant damage in neurons and oligodendrocytes eight days after administration. Interrupted synapses and mast cell extravasation were also found eight days after administration of the toxin. We thus conclude that the chronological order of events observed in the striatum could explain the neurological disorders found eight days after administration of the toxin.Fil: Tironi Farinati, Alicia Carla Flavia. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas. Laboratorio de Fisiopatogenia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Geoghegan, Patricia A.. Ministerio de Salud de la Nación. Administración Nacional de Laboratorios e Institutos de Salud; ArgentinaFil: Cangelosi, Adriana. Ministerio de Salud de la Nación. Administración Nacional de Laboratorios e Institutos de Salud; ArgentinaFil: Pinto, Alipio. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Fisiología. Laboratorio de Neurofisiopatología; ArgentinaFil: Loidl, Cesar Fabian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencias.;Fil: Goldstein, Jorge. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Fisiología. Laboratorio de Neurofisiopatología; Argentin

    Neurodegeneration and Motor Dysfunction in Mice Lacking Cytosolic and Mitochondrial Aldehyde Dehydrogenases: Implications for Parkinson's Disease

    Get PDF
    Previous studies have reported elevated levels of biogenic aldehydes in the brains of patients with Parkinson's disease (PD). In the brain, aldehydes are primarily detoxified by aldehyde dehydrogenases (ALDH). Reduced ALDH1 expression in surviving midbrain dopamine neurons has been reported in brains of patients who died with PD. In addition, impaired complex I activity, which is well documented in PD, reduces the availability of the NAD+ co-factor required by multiple ALDH isoforms to catalyze the removal of biogenic aldehydes. We hypothesized that chronically decreased function of multiple aldehyde dehydrogenases consequent to exposure to environmental toxins and/or reduced ALDH expression, plays an important role in the pathophysiology of PD. To address this hypothesis, we generated mice null for Aldh1a1 and Aldh2, the two isoforms known to be expressed in substantia nigra dopamine neurons. Aldh1a1−/−×Aldh2−/− mice exhibited age-dependent deficits in motor performance assessed by gait analysis and by performance on an accelerating rotarod. Intraperitoneal administration of L-DOPA plus benserazide alleviated the deficits in motor performance. We observed a significant loss of neurons immunoreactive for tyrosine hydroxylase (TH) in the substantia nigra and a reduction of dopamine and metabolites in the striatum of Aldh1a1−/−×Aldh2−/− mice. We also observed significant increases in biogenic aldehydes reported to be neurotoxic, including 4-hydroxynonenal (4-HNE) and the aldehyde intermediate of dopamine metabolism, 3,4-dihydroxyphenylacetaldehyde (DOPAL). These results support the hypothesis that impaired detoxification of biogenic aldehydes may be important in the pathophysiology of PD and suggest that Aldh1a1−/−×Aldh2−/− mice may be a useful animal model of PD

    Dexamethasone Rescues Neurovascular Unit Integrity from Cell Damage Caused by Systemic Administration of Shiga Toxin 2 and Lipopolysaccharide in Mice Motor Cortex

    Get PDF
    Shiga toxin 2 (Stx2)-producing Escherichia coli (STEC) causes hemorrhagic colitis and hemolytic uremic syndrome (HUS) that can lead to fatal encephalopathies. Neurological abnormalities may occur before or after the onset of systemic pathological symptoms and motor disorders are frequently observed in affected patients and in studies with animal models. As Stx2 succeeds in crossing the blood-brain barrier (BBB) and invading the brain parenchyma, it is highly probable that the observed neurological alterations are based on the possibility that the toxin may trigger the impairment of the neurovascular unit and/or cell damage in the parenchyma. Also, lipopolysaccharide (LPS) produced and secreted by enterohemorrhagic Escherichia coli (EHEC) may aggravate the deleterious effects of Stx2 in the brain. Therefore, this study aimed to determine (i) whether Stx2 affects the neurovascular unit and parenchymal cells, (ii) whether the contribution of LPS aggravates these effects, and (iii) whether an inflammatory event underlies the pathophysiological mechanisms that lead to the observed injury. The administration of a sublethal dose of Stx2 was employed to study in detail the motor cortex obtained from a translational murine model of encephalopathy. In the present paper we report that Stx2 damaged microvasculature, caused astrocyte reaction and neuronal degeneration, and that this was aggravated by LPS. Dexamethasone, an anti-inflammatory, reversed the pathologic effects and proved to be an important drug in the treatment of acute encephalopathies.Fil: Pinto, Alipio. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas; ArgentinaFil: Jacobsen, Mariana Elena. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas; ArgentinaFil: Geoghegan, Patricia. Diección Nacional de Instituto de Investigación. Administración Nacional de Laboratorio e Instituto de Salud; ArgentinaFil: Cangelosi, Adriana. Diección Nacional de Instituto de Investigación. Administración Nacional de Laboratorio e Instituto de Salud; ArgentinaFil: Cejudo, Maria Laura. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas; ArgentinaFil: Tironi-Farinati, Carla. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas; ArgentinaFil: Goldstein Raij, Jorge. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; Argentin

    Phosphoinositide metabolism and prostacyclin formation in retinal microvascular endothelium: Stimulation by adenine nucleotides

    Full text link
    Phosphoinositide lipid metabolism and prostacyclin production are implicated in endothelium dependent vascular relaxation in large blood vessels. To determine if these biochemical pathways might be involved in the regulation of microvascular tone in the retina, we measured the formation of 6-keto-prostaglandin-F1[alpha], the stable end product of prostacyclin, and inositol phosphates from 3H-labeled phosphoinositide lipids, in endothelial cells prepared from bovine retinal microvessels and maintained in long-term culture. We found that adenosine 5'-triphosphate and adenosine 5'-diphosphate both stimulated a dose-dependent accumulation of inositol phosphates and of 6-keto-prostaglandin-F1[alpha] in these cells. The agonist specificity of the responses, with stimulation by adenosine 5'-triphosphate and adenosine 5'-diphosphate, and inactivity of adenosine 5'-monophosphate and adenosine, suggest that they are mediated through P2 purinergic receptors. The similar early time courses of 6-keto-prostaglandin-F1[alpha] and inositol triphosphate production support the hypothesis that prostacyclin formation could result from the mobilization of intracellular calcium by inositol triphosphate, which activates phospholipase A, and thereby releases arachidonic acid to form prostacyclin. These findings point to a role for these cells in the regulation of normal retinal vascular tone. Because phosphoinositide lipid metabolism is altered in diabetes, dysfunction of these biochemical pathways in retinal endothelium could underlie the pathophysiology of diabetic retinopathy.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/28775/1/0000607.pd
    corecore