191 research outputs found

    Prophylactic Role of Boerhaavia diffusa in Ethylene Glycol Induced Calcium Oxalate Urolithiasis

    Get PDF
    Introduction: Boerhaavia diffusa Linn. (Family: Nyctaginaceae) is a widely used plant in India and Brazil as a traditional medicine for treatment of urolithiasis and other urinary disorders.Objectives: The aim of this study was to evaluate the antiurolithic activity of Boerhaavia diffusa root aqueous extract (BDE) as prophylaxis for renal stones.Methods: In vitro calcium oxalate (CaOx) crystallization inhibitory effect of BDE was determined by measuring change in turbidity at 620nm on addition of sodium oxalate in the synthetic urine. In a rat model of urolithiasis, induced by adding 0.75% ethylene glycol (EG) in drinking water and effect of simultaneous treatment of BDE (100-200 mg/kg) was observed for 28 days.Results: BDE inhibited CaOx nucleation, aggregation and crystal formation in the synthetic urine in vitro on addition of NaOx. The lithogenic treatment caused polyuria, weight loss, hyperoxaluria and impairment of renal function which was prevented by BDE. Hyperoxaluria and CaOx crystaldeposition in the renal tubules caused by EG intake was prevented by BDE treatment.Conclusion: This study indicates that the antiurolithic activity of Boerhaavia diffusa extract possibly mediated through inhibition of CaOx crystallization, diuresis and hypo-oxaluria may justify its prophylactic use in urolithiasis

    Impact of DNA methylation on trophoblast function

    Get PDF
    The influence of epigenetics is evident in many fields of medicine today. This is also true in placentology, where versatile epigenetic mechanisms that regulate expression of genes have shown to have important influence on trophoblast implantation and placentation. Such gene regulation can be established in different ways and on different molecular levels, the most common being the DNA methylation. DNA methylation has been shown today as an important predictive component in assessing clinical prognosis of certain malignant tumors; in addition, it opens up new possibilities for non-invasive prenatal diagnosis utilizing cell-free fetal DNA methods. By using a well known demethylating agent 5-azacytidine in pregnant rat model, we have been able to change gene expression and, consequently, the processes of trophoblast differentiation and placental development. In this review, we describe how changes in gene methylation effect trophoblast development and placentation and offer our perspective on use of trophoblast epigenetic research for better understanding of not only placenta development but cancer cell growth and invasion as well

    Exploring modifiable risk factors for premature birth in the context of COVID-19 mitigation measures: A discussion paper

    Get PDF
    © 2020 Elsevier Ltd. All rights reserved. This manuscript is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence http://creativecommons.org/licenses/by-nc-nd/4.0/.During the COVID-19 pandemic, parents with sick or premature babies have faced challenges following admission to a neonatal unit due to the imposed lock-down restrictions on social contact, hospital visitation and the wearing of personal protective equipment. The negative short-term impact on neonatal care in relation to the prevention of close proximity, contact and bonding between parents and babies is potentially significant. However, an interesting finding has been reported of a reduction in premature birth admissions to the neonatal intensive care unit during the pandemic, raising important questions. Why was this? Was it related to the effect of the modifiable risk-factors for premature birth? This discussion paper focuses on an exploration of these factors in the light of the potential impact of COVID-19 restrictions on neonatal care. After contextualising both the effect of premature birth and the pandemic on neonatal and parental short-term outcomes, the discussion turns to the modifiable risk-factors for premature birth and makes recommendations relevant to the education, advice and care given to expectant mothers.Peer reviewe

    Molecular pathways leading to loss of skeletal muscle mass in cancer cachexia can findings from animal models be translated to humans?

    Get PDF
    Background: Cachexia is a multi-factorial, systemic syndrome that especially affects patients with cancer of the gastrointestinal tract, and leads to reduced treatment response, survival and quality of life. The most important clinical feature of cachexia is the excessive wasting of skeletal muscle mass. Currently, an effective treatment is still lacking and the search for therapeutic targets continues. Even though a substantial number of animal studies have contributed to a better understanding of the underlying mechanisms of the loss of skeletal muscle mass, subsequent clinical trials of potential new drugs have not yet yielded any effective treatment for cancer cachexia. Therefore, we questioned to which degree findings from animal studies can be translated to humans in clinical practice and research. Discussion: A substantial amount of animal studies on the molecular mechanisms of muscle wasting in cancer cachexia has been conducted in recent years. This extensive review of the literature showed that most of their observations could not be consistently reproduced in studies on human skeletal muscle samples. However, studies on human material are scarce and limited in patient numbers and homogeneity. Therefore, their results have to be interpreted critically. Summary: More research is needed on human tissue samples to clarify the signaling pathways that lead to skeletal muscle loss, and to confirm pre-selected drug targets from animal models in clinical trials. In addition, improved diagnostic tools and standardized clinical criteria for cancer cachexia are needed to conduct standardized, randomized controlled trials of potential drug candidates in the future

    Early-time Ultraviolet Spectroscopy and Optical Follow-up Observations of the Type IIP Supernova 2021yja

    Get PDF
    We present three epochs of early-time ultraviolet (UV) and optical HST/STIS spectroscopy of the young, nearby Type IIP supernova (SN) 2021yja. We complement the HST data with two earlier epochs of Swift UVOT spectroscopy. The HST and Swift UVOT spectra are consistent with those of other well-studied Type IIP SNe. The UV spectra exhibit rapid cooling at early times, while less dramatic changes are seen in the optical. We also present Lick/KAIT optical photometry up to the late-time tail phase, showing a very long plateau and shallow decline compared with other SNe IIP. Our modeling of the UV spectrum with the TARDIS radiative transfer code produces a good fit for a high-velocity explosion, a low total extinction E(B − V) = 0.07 mag, and a subsolar metallicity. We do not find a significant contribution to the UV flux from an additional heating source, such as interaction with the circumstellar medium, consistent with the observed flat plateau. Furthermore, the velocity width of the Mg ii λ2798 line is comparable to that of the hydrogen Balmer lines, suggesting that the UV emission is confined to a region close to the photosphere

    SN 2022oqm-A Ca-rich Explosion of a Compact Progenitor Embedded in C/O Circumstellar Material

    Get PDF
    We present the discovery and analysis of SN 2022oqm, a Type Ic supernova (SN) detected <1 day after the explosion. The SN rises to a blue and short-lived (2 days) initial peak. Early-time spectral observations of SN 2022oqm show a hot (40,000 K) continuum with high ionization C and O absorption features at velocities of 4000 km s−1, while its photospheric radius expands at 20,000 km s−1, indicating a pre-existing distribution of expanding C/O material. After ∼2.5 days, both the spectrum and light curves evolve into those of a typical SN Ic, with line velocities of ∼10,000 km s−1, in agreement with the evolution of the photospheric radius. The optical light curves reach a second peak at t ≈ 15 days. By t = 60 days, the spectrum of SN 2022oqm becomes nearly nebular, displaying strong Ca ii and [Ca ii] emission with no detectable [O i], marking this event as Ca-rich. The early behavior can be explained by 10−3 M ⊙ of optically thin circumstellar material (CSM) surrounding either (1) a massive compact progenitor such as a Wolf-Rayet star, (2) a massive stripped progenitor with an extended envelope, or (3) a binary system with a white dwarf. We propose that the early-time light curve is powered by both the interaction of the ejecta with the optically thin CSM and shock cooling (in the massive star scenario). The observations can be explained by CSM that is optically thick to X-ray photons, is optically thick in the lines as seen in the spectra, and is optically thin to visible-light continuum photons that come either from downscattered X-rays or from the shock-heated ejecta. Calculations show that this scenario is self-consistent

    Forbidden hugs in pandemic times: III. Observations of the luminous red nova AT 2021biy in the nearby galaxy NGC 4631

    Get PDF
    We present an observational study of the luminous red nova (LRN) AT 2021biy in the nearby galaxy NGC 4631. The field of the object was routinely imaged during the pre-eruptive stage by synoptic surveys, but the transient was detected only at a few epochs from ∼231 days before maximum brightness. The LRN outburst was monitored with unprecedented cadence both photometrically and spectroscopically. AT 2021biy shows a short-duration blue peak, with a bolometric luminosity of ∼1.6×1041 erg s-1, followed by the longest plateau among LRNe to date, with a duration of 210 days. A late-time hump in the light curve was also observed, possibly produced by a shell-shell collision. AT 2021biy exhibits the typical spectral evolution of LRNe. Early-time spectra are characterised by a blue continuum and prominent H emission lines. Then, the continuum becomes redder, resembling that of a K-type star with a forest of metal absorption lines during the plateau phase. Finally, late-time spectra show a very red continuum (TBB ≈ 2050 K) with molecular features (e.g., TiO) resembling those of M-type stars. Spectropolarimetric analysis indicates that AT 2021biy has local dust properties similar to those of V838 Mon in the Milky Way Galaxy. Inspection of archival Hubble Space Telescope data taken on 2003 August 3 reveals a ∼20 M⊙ progenitor candidate with log (L/L⊙) = 5.0 dex and Teff 5900 K at solar metallicity. The above luminosity and colour match those of a luminous yellow supergiant. Most likely, this source is a close binary, with a 17-24 M⊙ primary component
    corecore