16 research outputs found

    Synergies for Improving Oil Palm Production and Forest Conservation in Floodplain Landscapes

    Get PDF
    Lowland tropical forests are increasingly threatened with conversion to oil palm as global demand and high profit drives crop expansion throughout the world’s tropical regions. Yet, landscapes are not homogeneous and regional constraints dictate land suitability for this crop. We conducted a regional study to investigate spatial and economic components of forest conversion to oil palm within a tropical floodplain in the Lower Kinabatangan, Sabah, Malaysian Borneo. The Kinabatangan ecosystem harbours significant biodiversity with globally threatened species but has suffered forest loss and fragmentation. We mapped the oil palm and forested landscapes (using object-based-image analysis, classification and regression tree analysis and on-screen digitising of high-resolution imagery) and undertook economic modelling. Within the study region (520,269 ha), 250,617 ha is cultivated with oil palm with 77% having high Net-Present-Value (NPV) estimates (413/ha?yr–413/ha?yr–637/ha?yr); but 20.5% is under-producing. In fact 6.3% (15,810 ha) of oil palm is commercially redundant (with negative NPV of −299/ha?yr−-299/ha?yr--65/ha?yr) due to palm mortality from flood inundation. These areas would have been important riparian or flooded forest types. Moreover, 30,173 ha of unprotected forest remain and despite its value for connectivity and biodiversity 64% is allocated for future oil palm. However, we estimate that at minimum 54% of these forests are unsuitable for this crop due to inundation events. If conversion to oil palm occurs, we predict a further 16,207 ha will become commercially redundant. This means that over 32,000 ha of forest within the floodplain would have been converted for little or no financial gain yet with significant cost to the ecosystem. Our findings have globally relevant implications for similar floodplain landscapes undergoing forest transformation to agriculture such as oil palm. Understanding landscape level constraints to this crop, and transferring these into policy and practice, may provide conservation and economic opportunities within these seemingly high opportunity cost landscapes

    SEROPOSITIVITY FOR ASCARIOSIS AND TOXOCARIOSIS AND CYTOKINE EXPRESSION AMONG THE INDIGENOUS PEOPLE IN THE VENEZUELAN DELTA REGION

    Get PDF
    El objetivo del presente estudio fue determinar la seropositividad de infección por Ascaris suum y Toxocara canis, utilizando antígenos de excreción/secreción (E/S) de Ascaris suum (AES) y Toxocara canis (TES) en una población indígena. Adicionalmente, se cuantificó la expresión de citocinas a partir de células de sangre periférica. Un total de 50 indígenas Warao se incluyeron en el estudio; 43 fueron adultos y 7 niños. Entre los adultos, 44,1% fueron seropositivos para ambos parásitos; mientras que los niños sólo mostraron seropositividad a uno u otro de los helmintos. Para ascariosis, el porcentaje de seropositividad para los antígenos AES fue alto tanto en adultos como en niños; 23,3% y 57,1%, respectivamente. Para toxocariosis, el porcentaje de seropositividad para los antígenos TES fue bajo en adultos así como en niños; 9,3% y 14,3%, respectivamente. El porcentaje de seronegatividad fue similar tanto para los antígenos AES como para TES en adultos (27,9%) y niños (28,6%). Cuando la seropositividad fue analizada a través de la técnica de Western blotting utilizando los antígenos AES; 3 bandas de 97,2, 193,6 y 200,2 kDas fueron principalmente reconocidas. Para los antígenos TES, 9 bandas fueron mayormente identificadas; 47,4, 52,2, 84,9, 98,2, 119,1, 131,3, 175,6, 184,4 y 193,6 kDas. Los análisis coproparasitológicos mostraron que los parásitos Blastocystis hominis, Hymenolepis nana y Entamoeba coli fueron los parásitos intestinales más comúnmente observados. La cuantificación de la expresión de las citocinas IFN-γ, IL-2, IL-6, TGF-β, TNF-α, IL-10 e IL-4 mostró que hubo un significante incremento de la expresión de IL-4 entre los indígenas con seropositividad para los antígenos TES (p < 0.002). La seropositividad para Ascaris y Toxocara fue prevalente entre los indígenas Warao.The present study aimed at measuring seropositivities for infection by Ascaris suum and Toxocara canis using the excretory/secretory (E/S) antigens from Ascaris suum (AES) and Toxocara canis (TES) within an indigenous population. In addition, quantification of cytokine expressions in peripheral blood cells was determined. A total of 50 Warao indigenous were included; of which 43 were adults and seven children. In adults, 44.1% were seropositive for both parasites; whereas children had only seropositivity to one or the other helminth. For ascariosis, the percentage of AES seropositivity in adults and children was high; 23.3% and 57.1%, respectively. While that for toxocariosis, the percentage of TES seropositivity in adults and children was low; 9.3% and 14.3%, respectively. The percentage of seronegativity was comparable for AES and TES antigens in adults (27.9%) and children (28.6%). When positive sera were analyzed by Western blotting technique using AES antigens; three bands of 97.2, 193.6 and 200.2 kDas were mostly recognized. When the TES antigens were used, nine major bands were mostly identified; 47.4, 52.2, 84.9, 98.2, 119.1, 131.3, 175.6, 184.4 and 193.6 kDas. Stool examinations showed that Blastocystis hominis, Hymenolepis nana and Entamoeba coli were the most commonly observed intestinal parasites. Quantification of cytokines IFN-γ, IL-2, IL-6, TGF-β, TNF-α, IL-10 and IL-4 expressions showed that there was only a significant increased expression of IL-4 in indigenous with TES seropositivity (p < 0.002). Ascaris and Toxocara seropositivity was prevalent among Warao indigenous

    Validation of a nicotine vapor self-administration model in rats with relevance to electronic cigarette use

    No full text
    The debate about electronic cigarettes is dividing healthcare professionals, policymakers, manufacturers, and communities. A key limitation in our understanding of the cause and consequences of vaping is the lack of animal models of nicotine vapor self-administration. Here, we developed a novel model of voluntary electronic cigarette use in rats using operant behavior. We found that rats voluntarily exposed themselves to nicotine vapor to the point of reaching blood nicotine levels that are similar to humans. The level of responding on the active (nicotine) lever was similar to the inactive (air) lever and lower than the active lever that was associated with vehicle (polypropylene glycol/glycerol) vapor, suggesting low positive reinforcing effects and low nicotine vapor discrimination. Lever pressing behavior with nicotine vapor was pharmacologically prevented by the α4β2 nicotinic acetylcholine receptor partial agonist and α7 receptor full agonist varenicline in rats that self-administered nicotine but not vehicle vapor. Moreover, 3 weeks of daily (1 h) nicotine vapor self-administration produced addiction-like behaviors, including somatic signs of withdrawal, allodynia, anxiety-like behavior, and relapse-like behavior after 3 weeks of abstinence. Finally, 3 weeks of daily (1 h) nicotine vapor self-administration produced cardiopulmonary abnormalities and changes in α4, α3, and β2 nicotinic acetylcholine receptor subunit mRNA levels in the nucleus accumbens and medial prefrontal cortex. These findings validate a novel animal model of nicotine vapor self-administration in rodents with relevance to electronic cigarette use in humans and highlight the potential addictive properties and harmful effects of chronic nicotine vapor self-administration

    Prediction accuracies for growth and wood attributes of interior spruce in space using genotyping-by-sequencing

    Get PDF
    Background: Genomic selection (GS) in forestry can substantially reduce the length of breeding cycle and increase gain per unit time through early selection and greater selection intensity, particularly for traits of low heritability and late expression. Affordable next-generation sequencing technologies made it possible to genotype large numbers of trees at a reasonable cost. Results: Genotyping-by-sequencing was used to genotype 1,126 Interior spruce trees representing 25 open-pollinated families planted over three sites in British Columbia, Canada. Four imputation algorithms were compared (mean value (MI), singular value decomposition (SVD), expectation maximization (EM), and a newly derived, family-based k-nearest neighbor (kNN-Fam)). Trees were phenotyped for several yield and wood attributes. Single- and multi-site GS prediction models were developed using the Ridge Regression Best Linear Unbiased Predictor (RR-BLUP) and the Generalized Ridge Regression (GRR) to test different assumption about trait architecture. Finally, using PCA, multi-trait GS prediction models were developed. The EM and kNN-Fam imputation methods were superior for 30 and 60% missing data, respectively. The RR-BLUP GS prediction model produced better accuracies than the GRR indicating that the genetic architecture for these traits is complex. GS prediction accuracies for multi-site were high and better than those of single-sites while multi-site predictability produced the lowest accuracies reflecting type-b genetic correlations and deemed unreliable. The incorporation of genomic information in quantitative genetics analyses produced more realistic heritability estimates as half-sib pedigree tended to inflate the additive genetic variance and subsequently both heritability and gain estimates. Principle component scores as representatives of multi-trait GS prediction models produced surprising results where negatively correlated traits could be concurrently selected for using PCA2 and PCA3. Conclusions: The application of GS to open-pollinated family testing, the simplest form of tree improvement evaluation methods, was proven to be effective. Prediction accuracies obtained for all traits greatly support the integration of GS in tree breeding. While the within-site GS prediction accuracies were high, the results clearly indicate that single-site GS models ability to predict other sites are unreliable supporting the utilization of multi-site approach. Principle component scores provided an opportunity for the concurrent selection of traits with different phenotypic optima.Forest Sciences, Department ofForestry, Faculty ofNon UBCReviewedFacult
    corecore