116 research outputs found

    An Empirical Method for Comparing Pitch Patterns in Spoken and Musical Melodies: A Comment on J.G.S. Pearl's "Eavesdropping with a Master: Leos JanĆ”Äek and the Music of Speech."

    Get PDF
    Music and speech both feature structured melodic patterns, yet these patterns are rarely compared using empirical methods. One reason for this has been a lack of tools which allow quantitative comparisons of spoken and musical pitch sequences. Recently, a new model of speech intonation perception has been proposed based on principles of pitch perception in speech. The ā€œprosogramā€ model converts a sentence's fundamental frequency contour into a sequence of discrete tones and glides. This sequence is meant to represent a listener's perception of pitch in connected speech. This article briefly describes the prosogram and suggests a few ways in which it can be used to compare the structure of spoken and musical melodies

    Why would Musical Training Benefit the Neural Encoding of Speech? The OPERA Hypothesis

    Get PDF
    Mounting evidence suggests that musical training benefits the neural encoding of speech. This paper offers a hypothesis specifying why such benefits occur. The ā€œOPERAā€ hypothesis proposes that such benefits are driven by adaptive plasticity in speech-processing networks, and that this plasticity occurs when five conditions are met. These are: (1) Overlap: there is anatomical overlap in the brain networks that process an acoustic feature used in both music and speech (e.g., waveform periodicity, amplitude envelope), (2) Precision: music places higher demands on these shared networks than does speech, in terms of the precision of processing, (3) Emotion: the musical activities that engage this network elicit strong positive emotion, (4) Repetition: the musical activities that engage this network are frequently repeated, and (5) Attention: the musical activities that engage this network are associated with focused attention. According to the OPERA hypothesis, when these conditions are met neural plasticity drives the networks in question to function with higher precision than needed for ordinary speech communication. Yet since speech shares these networks with music, speech processing benefits. The OPERA hypothesis is used to account for the observed superior subcortical encoding of speech in musically trained individuals, and to suggest mechanisms by which musical training might improve linguistic reading abilities

    A Rare View Of Coding Mutations And Plasma Lipid Levels

    Get PDF
    A RARE VIEW OF CODING MUTATIONS AND PLASMA LIPID LEVELS. Aniruddh P. Patel, Sekar Kathiresan. Center for Human Genetics Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA and Program in Medical and Population Genetics, the Broad Institute of Harvard and MIT, Cambridge, MA (Sponsored by Richard P. Lifton, Department of Genetics, Yale University School of Medicine, New Haven, CT). Plasma low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglycerides (TG) are quantitative, heritable risk factors for coronary heart disease. Genome-wide association screens (GWAS) of common DNA sequence variants have identified many loci associated with plasma lipid levels. Targeted re-sequencing of exons has been proposed as a strategy to pinpoint causal variants and genes based in GWAS loci. Additionally, genotyping of rare and low frequency variants in large cohorts using an exome array has been proposed as a method to assess the contribution of rare variation to plasma lipid levels at the population level. We tested the hypothesis that each genomic region identified with a significant HDL-C level association by GWA studies contains at least one gene causal for HDL-C metabolism. We performed solution-based hybrid selection of 4,118 exons at 407 genes within 47 loci associated with HDL-C and subsequently sequenced individuals drawn from the extremes of the HDL-C distribution (high HDL-C, n=385, mean=102 mg/dl or low HDL-C, n=334, mean=32 mg/dl) using next-generation sequencing technology. We tested whether rare coding sequence variants, individually or aggregated within a gene, were associated with HDL-C. To replicate findings, we performed follow-up genotyping using the Exome Array (Illumina HumanExome BeadChip) in independent participants with extremely high HDL-C (n=514, mean=98 mg/dl) or low HDL-C (n=580, mean=32 mg/dl). Through sequencing, we identified 8,138 rare (minor allele frequency \u3c 5%) missense, nonsense, or splice site variants. Across discovery sequencing and replication genotyping, we found 3 variants to be significantly associated with HDL-C. Of these, none were novel. In gene-level association analyses where rare variants within each gene are collapsed, only the CETP gene was associated with plasma HDL-C (P=2.0 x 10-6). After sequencing genes from GWAS loci in participants with extremely high or low HDL-C, we did not identify any new rare coding sequence variants with a strong effect on HDL-C. These results provide insight regarding the design of similar sequencing studies for cardiovascular traits with respect to sample size, follow-up, and analysis methodology. We then tested the hypothesis that rare coding and splice-site mutations contribute to inter-individual variability in plasma lipid concentrations in the population. We contributed to the design of a new, rare-variant genotyping array based on the sequences of the protein-coding regions of ~18,500 genes ( the exome ) in \u3e12,000 individuals. This genotyping array ( the Exome Chip ) includes approximately 250,000 non-synonymous and splice-site mutations and is estimated to capture nearly all such variation with a \u3e1:1000 allele frequency in the European population. We obtained Exome Chip genotype data in \u3e130,000 individuals from 58 studies. Within each study, we tested the association of plasma lipids with individual rare variants. To combine statistical evidence across studies, we performed meta-analysis. Top results for each trait replicated established associations in the genes APOE, CETP, and APOA5 for LDL-C, HDL-C, and TG, respectively. We identified 11 new genes associated with plasma lipid levels: ABCA6 with LDL-C (C1359R, frequency = 1:100, effect=+8.2 mg/dl, P=9.7 x 10-32, SERPINA with LDL-C (E366K, frequency = 2:100, effect = +3.1 mg/dl, P=2.3 x 10-7), REST with LDL-C (R645W, frequency = 6:10000, effect = +13.7 mg/dl, P=5.0 x 10-7), FBLN1 with LDL-C (H695R, frequency = 2:100, effect = -2.7 mg/dl, P=5.3 x 10-7), CCDC117 with LDL-C (T232I, frequency = 9:1000, effect = -4.3 mg/dl, P=7.3 x 10-7), TMED6 with HDL-C (F6L, frequency = 4:100, effect = -0.8 mg/dl, P=4.4 x 10-9), CDC25A with HDL-C (Q24H, frequency = 3:100, effect = -1.0 mg/dl, P=8.4 x 10-8), MAP1A (P2349L, frequency = 3:100) with HDL-C (effect= -1.4mg/dl, P=3.9 x 10-14) and TG (effect=+8.4mg/dl, P=3.2 x 10-26), PRRC2A with TG (S1219Y, frequency = 2:100, effect = +6.6 mg/dl, P=4.6 x 10-17), COL18A1 with TG (V125I, frequency = 1:1000, effect = +18.0 mg/dl, P=1.3 x 10-7), and EDEM3 with TG (P746S, frequency = 1:100, effect = -5.4 mg/dl, P=2.4 x 10-7). In addition, at some genes previously known to affect lipids, we identified new associations for variants: APOC3 (R19Stop, frequency = 3:10,000) with HDL (effect=+11mg/dl, P=9.9 x 10-12) and with TG (effect=-65.9mg/dl, P=5.8 x 10-23); (splicesite IVS2+1 G\u3eA, frequency = 2:1000) with HDL (effect=+10.6mg/dl, P=3.5 x 10-42) and with TG (effect=-65.2mg/dl, P=2.0 x 10-81). Using the Exome Chip rare variant genotyping array, we have discovered several new genes and variants associated with plasma lipids

    Temporal Generalization of Synchronized Saccades Beyond the Trained Range in Monkeys

    Get PDF
    Synchronized movements with external periodic rhythms, such as dancing to a beat, are commonly observed in daily life. Although it has been well established that some vocal learning species (including parrots and humans) spontaneously develop this ability, it has only recently been shown that monkeys are also capable of predictive and tempo-flexible synchronization to periodic stimuli. In our previous study, monkeys were trained to make predictive saccades for alternately presented visual stimuli at fixed stimulus onset asynchronies (SOAs) to obtain a liquid reward. The monkeys generalized predictive synchronization to novel SOAs in the middle of trained range, suggesting a capacity for tempo-flexible synchronization. However, it is possible that when encountering a novel tempo, the monkeys might sample learned saccade sequences from those for the short and long SOAs so that the mean saccade interval matched the untrained SOA. To eliminate this possibility, in the current study we tested monkeys on novel SOAs outside the trained range. Animals were trained to generate synchronized eye movements for 600 and 900-ms SOAs for a few weeks, and then were tested for longer SOAs. The accuracy and precision of predictive saccades for one untrained SOA (1200 ms) were comparable to those for the trained conditions. On the other hand, the variance of predictive saccade latency and the proportion of reactive saccades increased significantly in the longer SOA conditions (1800 and 2400 ms), indicating that temporal prediction of periodic stimuli was difficult in this range, similar to previous results on synchronized tapping in humans. Our results suggest that monkeys might share similar synchronization mechanisms with humans, which can be subject to physiological examination in future studies

    Testing beat perception without sensory cues to the beat: the Beat-Drop Alignment Test (BDAT)

    Get PDF
    Beat perception can serve as a window into internal time-keeping mechanisms, auditoryā€“motor interactions, and aspects of cognition. One aspect of beat perception is the covert continuation of an internal pulse. Of the several popular tests of beat perception, none provide a satisfying test of this faculty of covert continuation. The current study proposes a new beat-perception test focused on covert pulse continuation: The Beat-Drop Alignment Test (BDAT). In this test, participants must identify the beat in musical excerpts and then judge whether a single probe falls on or off the beat. The probe occurs during a short break in the rhythmic components of the music when no rhythmic events are present, forcing participants to judge beat alignment relative to an internal pulse maintained in the absence of local acoustic timing cues. Here, we present two large (N > 100) tests of the BDAT. In the first, we explore the effect of test item parameters (e.g., probe displacement) on performance. In the second, we correlate scores on an adaptive version of the BDAT with the computerized adaptive Beat Alignment Test (CA-BAT) scores and indices of musical experience. Musical experience indices outperform CA-BAT score as a predictor of BDAT score, suggesting that the BDAT measures a distinct aspect of beat perception that is more experience-dependent and may draw on cognitive resources such as working memory and musical imagery differently than the BAT. The BDAT may prove useful in future behavioral and neural research on beat perception, and all stimuli and code are freely available for download

    Mapping Specific Mental Content during Musical Imagery

    Get PDF
    Humans can mentally represent auditory information without an external stimulus, but the specificity of these internal representations remains unclear. Here, we asked how similar the temporally unfolding neural representations of imagined music are compared to those during the original perceived experience. We also tested whether rhythmic motion can influence the neural representation of music during imagery as during perception. Participants first memorized six 1-min-long instrumental musical pieces with high accuracy. Functional MRI data were collected during: 1) silent imagery of melodies to the beat of a visual metronome; 2) same but while tapping to the beat; and 3) passive listening. During imagery, inter-subject correlation analysis showed that melody-specific temporal response patterns were reinstated in right associative auditory cortices. When tapping accompanied imagery, the melody-specific neural patterns were reinstated in more extensive temporal-lobe regions bilaterally. These results indicate that the specific contents of conscious experience are encoded similarly during imagery and perception in the dynamic activity of auditory cortices. Furthermore, rhythmic motion can enhance the reinstatement of neural patterns associated with the experience of complex sounds, in keeping with models of motor to sensory influences in auditory processing

    The impact of basal ganglia lesions on sensorimotor synchronization, spontaneous motor tempo, and the detection of tempo changes

    Get PDF
    a b s t r a c t The basal ganglia (BG) are part of extensive subcortico-cortical circuits that are involved in a variety of motor and non-motor cognitive functions. Accumulating evidence suggests that one specific function that engages the BG and associated cortico-striato-thalamo-cortical circuitry is temporal processing, i.e., the mechanisms that underlie the encoding, decoding and evaluation of temporal relations or temporal structure. In the current study we investigated the interplay of two processes that require precise representations of temporal structure, namely the perception of an auditory pacing signal and manual motor production by means of finger tapping in a sensorimotor synchronization task. Patients with focal lesions of the BG and healthy control participants were asked to align finger taps to tone sequences that either did or did not contain a tempo acceleration or tempo deceleration at a predefined position, and to continue tapping at the final tempo after the pacing sequence had ceased. Performance in this adaptive synchronization-continuation paradigm differed between the two groups. Selective damage to the BG affected the abilities to detect tempo changes and to perform attention-dependent error correction, particularly in response to tempo decelerations. An additional assessment of preferred spontaneous, i.e., unpaced but regular, production rates yielded more heterogeneous results in the patient group. Together these findings provide evidence for less efficient processing in the perception and the production of temporal structure in patients with focal BG lesions. The results also support the functional role of the BG system in attention-dependent temporal processing

    Intonation processing in congenital amusia: discrimination, identification and imitation

    Get PDF
    This study investigated whether congenital amusia, a neuro-developmental disorder of musical perception, also has implications for speech intonation processing. In total, 16 British amusics and 16 matched controls completed five intonation perception tasks and two pitch threshold tasks. Compared with controls, amusics showed impaired performance on discrimination, identification and imitation of statements and questions that were characterized primarily by pitch direction differences in the final word. This intonation-processing deficit in amusia was largely associated with a psychophysical pitch direction discrimination deficit. These findings suggest that amusia impacts upon oneā€™s language abilities in subtle ways, and support previous evidence that pitch processing in language and music involves shared mechanisms
    • ā€¦
    corecore