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This study investigated whether congenital amusia, a neuro-developmental disorder of musical perception, also has implications

for speech intonation processing. In total, 16 British amusics and 16 matched controls completed five intonation perception

tasks and two pitch threshold tasks. Compared with controls, amusics showed impaired performance on discrimination, iden-

tification and imitation of statements and questions that were characterized primarily by pitch direction differences in the final

word. This intonation-processing deficit in amusia was largely associated with a psychophysical pitch direction discrimination

deficit. These findings suggest that amusia impacts upon one’s language abilities in subtle ways, and support previous evidence

that pitch processing in language and music involves shared mechanisms.

Keywords: congenital amusia; intonation processing; statement–question discrimination/identification/imitation; pitch threshold;
pitch change/direction

Abbreviations: F0 = fundamental frequency; MBEA = Montreal Battery of Evaluation of Amusia; NART = National Adult Reading Test

Introduction
Around 4% of the general population have been estimated to be

‘tune deaf’, being unable either to sing in tune or detect an

out-of-tune note in a melody (Kalmus and Fry, 1980). This dis-

order, termed ‘congenital amusia’ (amusia hereafter; Peretz et al.,

2002) has been investigated in relation to its phenomenology,

neural underpinnings and genetic origins (Patel, 2008; Peretz,

2008; Stewart, 2008). Behavioural studies have shown that indi-

viduals with amusia (amusics hereafter) exhibit impaired music

production and perception abilities, having difficulties singing in

tune, dancing or tapping along with music, detecting anomalous

pitches in both familiar and unfamiliar melodies, judging disson-

ance in musical excerpts and recognizing and memorizing melo-

dies without lyrics (Ayotte et al., 2002; Dalla Bella and Peretz,

2003; Dalla Bella et al., 2009). Its core deficit has been proposed

to relate to fine-grained pitch discrimination (Peretz et al., 2002;

Hyde and Peretz, 2004; Peretz, 2008) and pitch pattern/direction

or melodic contour perception (Griffiths, 2008; Patel, 2008;

Stewart, 2008). Structural imaging studies have found amusic

brains to be different from neurotypical brains in subtle ways

(Hyde et al., 2006, 2007; Mandell et al., 2007) and there is evi-

dence that the disorder is heritable (Drayna et al., 2001; Peretz

et al., 2007).

Although amusics rarely report problems outside the musical

domain, it may be expected that these individuals would struggle

with aspects of spoken language that rely on pitch-varying infor-

mation. For instance, pitch is modulated in specific ways to convey

different communicative meanings (e.g. word stress, focus and

sentence type) in speech (Xu, 2005). However, the question of
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whether amusia has implications for speech intonation perception

is, as yet, unresolved. In previous studies (Ayotte et al., 2002;

Patel et al., 2005, 2008), amusics showed no problems with

focus identification and discrimination based on salient pitch ac-

cents (e.g. ‘Go in front of the bank, I said’ versus ‘Go in front of

the bank, I said’), or with statement/question identification (e.g.

‘He speaks French.’ versus ‘He speaks French?’). The majority of

them also had no problems with statement–question discrimin-

ation. On the basis of these reports, it has been argued that the

pitch deficits seen in amusia are domain-specific (Ayotte et al.,

2002; Peretz and Coltheart, 2003; Peretz, 2006, 2008).

However, two considerations suggest that further research is war-

ranted. First, the intonational pitch contrasts (final pitch glides of

statements versus questions) in Ayotte et al. (2002) and Patel

et al. (2008) were on average 5–12 semitones (cf. Patel et al.,

2008) while amusics’ average thresholds for discrimination of pitch

direction have been shown to be around two semitones (Foxton

et al., 2004), thus making it likely that the amusics were perform-

ing at ceiling in previous studies of intonation processing. Second,

the dissociation in the performance of amusics seen in Ayotte

et al. (2002) (intact performance for speech; impaired for tone

analogues) is not only explicable in terms of a genuine sparing

of pitch processing in the language domain. Patel (2008) notes

that the two tasks (speech and tone analogues) are not equivalent

in terms of the potential they offer for a ‘semantic recoding’ strat-

egy. In the speech condition, salient pitch changes can be

‘tagged’, according to the syllable on which this occurs, thus redu-

cing the memory demands of the task. In the tone analogue con-

dition, salient pitch changes are divorced from any lexical

information, so comparison must be made across the whole

pitch pattern. Recent findings suggest that amusics are impaired

for short-term memory for pitch (Tillmann et al., 2009; Williamson

et al., 2010), making it possible that the observed dissociation

relates not to domain specificity, but rather to the extent to

which the two tasks rely on pitch memory.

With these considerations in mind, the present study aimed to

test discrimination of pitch contours in amusia, under conditions

where semantic recoding strategies would not be helpful and

incorporating a range of pitch contrasts, including more subtle

examples than previously used. To compare perception of pitch

contours within versus outside speech, we used statement–ques-

tion discrimination tasks under conditions of natural speech, glid-

ing tone and nonsense speech analogues, and we also included

two psychophysical tasks for determination of participants’ thresh-

olds for detection of pitch change (monotone versus up/down)

and discrimination of pitch direction (up versus down). We

hypothesized that amusics would show deficits in statement–ques-

tion discrimination under all three stimulus conditions and that

these deficits would be related to measured psychophysical thresh-

olds for the discrimination of pitch direction.

In addition, the present study addressed a secondary issue,

regarding a possible dissociation between perception and action

in the context of speech. A recent study reported that amusics

were able to imitate the correct direction of a heard pitch interval,

despite their inability to report its direction (Loui et al., 2008).

In order to establish whether a similar dissociation may hold in

the context of perception versus production of pitch contours

within speech, we asked participants to identify and imitate state-

ments and questions that differed mainly in pitch direction of the

final word (down in statements and up in questions).

Materials and methods

Participants
Sixteen amusics and 16 matched controls participated in the study.

All were native speakers of British English and had no self-reported

neurological or psychiatric disorders. They were recruited via an online

musical listening test (http://www.delosis.com/listening/home.html)

consisting of the scale and rhythm subtests of the Montreal Battery

of Evaluation of Amusia (MBEA; Peretz et al., 2003). They were

invited for further on-site testing because their online scores were

either in the amusic or normal range. Four MBEA subtests (scale,

contour, interval and rhythm) were administered to all participants

to confirm the presence or absence of amusia. Previous research has

shown that amusia is characterized by poor performance on the

pitch-based subtests of the MBEA (scale, contour, interval) while

scores on the rhythm subtest are likely to be in the normal range

for 50% of amusics (Peretz et al., 2003). For this reason, we calcu-

lated a composite score for the three pitch-based subtests, using 65 as

a cut-off score [the sum of the cut-off scores for the three subtests in

Peretz et al. (2003); those with composite scores at or below 65 were

confirmed as amusics]. A summary of the participants’ characteristics,

means and standard deviations (SD) of their scores (in number of

correct responses) on the four MBEA subtests, National Adult

Reading Test (NART; Nelson and Willison, 1991) and digit span tests

(Wechsler, 1997) are listed in Table 1. As can be seen, while amusics

and controls were matched in their age, sex, handedness, musical

training background, NART and digit span scores, the two groups

performed significantly differently on all four MBEA subsets (detailed

information and individual scores can be found in Supplementary

material 1).

We additionally collected background measures on speech produc-

tion (two tasks measuring pitch range and voice quality in terms of

vocal fold contact phase ratio) and everyday recognition of sounds

(a questionnaire including items relating to speaker identification,

regional accent discrimination and identification of environmental

sounds). Amusics were found to be normal in these respects

(see Supplementary materials 2 and 3 for details).

Perception stimuli
Eighteen statement–question pairs were recorded by a 28-year-old

female student at Goldsmiths, University of London, who spoke

Southern British English with a slight London accent. The sentences

ranged between three and nine syllables, with average duration of 1 s

(SD 0.2 s) and average fundamental frequency (F0) 179.5 Hz (SD

13.7 Hz). These sentence pairs were later modified using a

cross-splicing technique such that each pair shared the same stem

until the final word. Hence, the statement–question pairs mainly dif-

fered in the pitch contours of the final word, with those in statements

going down and those in questions going up at the end. We inten-

tionally did not manipulate the duration and amplitude of the final

word in order to preserve the natural quality of the utterances.

As can be seen from Table 2, compared with those in Patel et al.

(2008), the current stimuli were spoken with faster rates and with

smaller final glide sizes and rates (rate = size/duration; for detailed
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definitions and measurement methods, see Patel et al., 2008). It is

worth mentioning that the relatively small pitch changes in the current

stimuli were not deliberately elicited and that the speaker was

instructed to read the sentences naturally as if she was talking to

somebody, asking questions and making statements.

Using the technique developed in Patel et al. (1998) for converting

intonation patterns of spoken utterances to tone analogues, we first

generated the discrete tone analogue of each syllable in every sen-

tence using Praat (Boersma, 2001). The newly created sound was the

sum of the fundamental frequency at the median F0 of the original

syllable [= (max F0 + min F0)/2] plus its seven odd harmonics (of the

same amplitude and with sine phase), and was sampled at 44 100 Hz.

The tone analogue had the same duration as the original syllable

rhyme, since people tend to base their judgements of syllable duration

on the rhyme (Goedemans, 1998). An 8 ms onset and offset taper was

later applied to the tone to adjust the rise/decay time. The tone ana-

logues of all the syllables in each sentence were then combined to-

gether, preserving the silent gaps as in the original spoken utterances,

to form a discrete-tone sequence, which had the same temporal pat-

tern as the original sentence. The pitch of each tone in the sequence

Table 2 Sentences used in the intonation tasks

Sentence Sentence
rate (syl/s)

Size of final
pitch glide (st)

Rate of final pitch
glide (st/s)

Duration of final
pitch glide (s)

S Q S Q S Q S Q

It’s a lie./? 4.7 4.4 �2.5 7.1 �11.3 40.4 0.22 0.18

This is love./? 3.9 3.5 �3.6 2.6 �17.4 20.7 0.21 0.12

He hurt his knee./? 4.3 4.2 �3.0 3.7 �16.7 21.6 0.18 0.17

The answer is no./? 5.6 5.6 �2.7 4.7 �24.3 28.3 0.11 0.17

The deal is still on./? 5.5 5.3 �3.7 4.4 �24.3 31.4 0.15 0.14

He just turned one./? 3.9 4.0 �5.1 4.0 �29.5 16.6 0.17 0.24

She looks like Anne./? 3.9 4.0 �2.4 3.4 �17.2 26.3 0.14 0.13

She changed her name./? 4.3 4.3 �4.5 5.5 �16.7 35.3 0.27 0.16

It’s a menu./? 5.4 5.5 �5.4 2.9 �18.8 17.2 0.29 0.17

She looks manly./? 4.3 3.9 �6.2 4.1 �14.8 12.4 0.41 0.33

He lives in Ealing./? 5.7 5.6 �6.4 8.1 �27.1 32.6 0.24 0.25

She grew up in Ely./? 5.8 5.8 �4.0 9.6 �18.3 29.2 0.22 0.33

They were in a limo./? 6.7 6.4 �3.5 6.9 �17.5 40.7 0.20 0.17

They named her Lilly./? 5.3 5.4 �4.2 4.9 �25.5 26.5 0.17 0.18

It’s from Emily./? 6.1 6.1 �4.1 5.0 �26.3 12.7 0.16 0.39

He speaks Romany./? 4.6 4.4 �3.3 2.9 �7.5 10.3 0.44 0.28

He was born in Illinois./? 6.1 5.9 �3.0 3.2 �8.0 18.9 0.37 0.17

He considers her his enemy./? 6.7 6.5 �3.7 4.8 �10.4 19.3 0.35 0.25

Mean (current study) 5.1 5.0 �4.0 4.9 �18.4 24.5 0.24 0.21

SD (current study) 0.9 1.0 1.2 1.9 6.6 9.3 0.10 0.08

Mean (Patel et al., 2008) 4.2 4.2 �7.4 12.3 �37.8 73.5 0.22 0.18

SD (Patel et al., 2008) 0.8 0.8 2.0 1.9 11.9 23.9 0.11 0.07

S = statement; Q = question; syl = syllable; st = semitone.

Table 1 Subject characteristics

Group Age Sex Handedness Musical
training

Scale Contour Interval Rhythm Pitch
composite

NART Digit
span

Amusic

m 55.31 10F 2L 1.28 18.94 19.13 17.81 24.19 55.88 42.00 20.80

� 9.24 6M 14R 3.24 2.79 3.05 2.32 3.43 6.73 4.80 2.86

Control

m 52.25 10F 2L 1.52 26.25 26.81 25.69 27.56 78.75 44.67 19.69

� 9.14 6M 14R 3.11 2.18 1.72 2.47 1.59 5.12 4.35 4.36

t-tests

t 0.94 �0.21 �8.26 �8.78 �9.31 �3.57 �10.82 �1.59 0.84

P 0.3535 0.8339 50.0001 50.0001 50.0001 0.0018 50.0001 0.1221 0.4059

Summary of the two groups in terms of age, sex, handedness, musical training (in years), score on Montreal Battery of Evaluation of Amusia (MBEA): scale, contour, interval
and rhythm subtests (number of correct responses, out of 30), NART and digit span scores.
m= mean; � = standard deviation; F = female; M = male; L = left; R = right; the pitch composite score is the sum of the scores on the MBEA scale, contour and interval

subtests; t is the statistic of the Welch two sample t-test (two-tailed).
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was then changed from a discrete pitch to a gliding pitch that exactly

followed the original F0 contour of the syllable rhyme from which the

tone had been constructed. This resulted in a gliding tone sequence

that mirrored the pitch and temporal patterns of the original utterance.

Nonsense speech analogues were made from sequences of [li],

which was originally the second syllable in ‘Ely’ (as in ‘She grew up

in Ely’ uttered by the same female speaker). The duration of [li] was

lengthened or shortened by Praat to match that of its corresponding

gliding tone. These [li] sounds were then combined with silences to

make up a sequence that was comparable with the natural speech and

gliding tone stimuli in terms of both pitch and rhythm patterns (sound

examples of the different conditions can be found at http://www.gol-

d.ac.uk/music-mind-brain/speechproject/).

The peak amplitudes of the three sets of discrimination stimuli were

normalized to maximum in Praat to roughly equate perceived loud-

ness. During testing, the participants were also allowed to adjust the

output level of the external sound card (Edirol UA-4FX USB Audio

Capture) to a comfortable loudness level.

The identification and imitation tasks employed the same set of

statements and questions as in the statement–question discrimination

task in natural speech.

Procedure
Five intonation perception tasks and two pitch threshold tasks were

administered to the participants in fixed order (statement–question

discrimination in natural speech and gliding tones; nonsense speech,

statement–question identification and imitation, pitch change detection

and pitch direction discrimination), so as to keep the possible

carry-over effects the same across participants. The experiments

were conducted in a sound-attenuated chamber. Participants com-

pleted written consent forms to participate in the research, which

was reviewed and approved by the Goldsmiths, University of

London Ethics Committee.

Statement–question discrimination
Each of the 18 statement–question pairs appeared in both ‘same’

(randomly-selected nine pairs as statement–statement and the other

nine pairs as question–question) and ‘different’ (randomly-selected

nine pairs as statement–question and the other nine pairs as ques-

tion–statement) configuration. This resulted in 36 pairs in total in the

testing session with 750 ms interstimulus interval. Two more

trials, which were distinct from the test stimuli, were included in the

practice session to acquaint participants with the testing procedure

and sound materials. The task was run using Praat, and the 36 state-

ment–question pairs were pseudo-randomized so that they appeared

in the same order for all participants. Participants listened to one pair

at a time and informed the experimenter whether the two stimuli were

‘same’ or ‘different’. The experimenter then made the response on

behalf of the participant. Following the response, another pair was

played two seconds later.

The gliding tone and nonsense speech analogues, each including

two practice trials, were arranged and presented to the participants

in the same way as their natural speech counterparts. Participants were

not informed that these stimuli were based on the statements and

questions tested above.

Statement–question identification and
imitation
In the identification task, the 36 statements and questions were

pseudo-randomized and presented one at a time in a series to the

participants, who were required to report whether they heard a state-

ment or a question.

In the imitation task, the 36 statements and questions were

presented again, in the same way as in the previous identification

task. Participants were required to imitate the pitch patterns of these

utterances as closely as possible. They were also reminded that even

though they may have a different way of producing statements and

questions compared with the model, they should try to mirror exactly

the way the model phrased the utterances, using a comfortable pitch

range and loudness level. The experimenter controlled the pace by

playing the sentences one at a time. Participants imitated each sen-

tence immediately following its presentation. The imitations were

recorded in the same fashion as in the two speech production tasks

(see Supplementary material 2 for details).

Pitch threshold tasks
In the pitch change detection task (Fig. 1A), participants heard three

sounds, each 600 ms in duration. Two sounds were steady-state pure

tones of 500 Hz; the other was a pure tone containing a pitch glide

(250 ms steady-state onset, 100 ms excursion and 250 ms steady-state

offset), logarithmically centred on 500 Hz. The participant was required

to identify the sound containing the pitch glide as the ‘odd-one-out’,

which always appeared as the first or last of the three-sound

600

500

400

F
0 

(H
Z

)
600

500

400

F
0 

(H
Z

)

0 600 1200 1800 2400 3000
Time (ms)

0 600 1200 1800 2400 3000
Time (ms)

Which position had the glide? (first or last) Which glide differed in direction? (first or last)

Pitch change detection Pitch direction discriminationA B

Figure 1 Illustrations of the pitch threshold tasks: (A) pitch change detection and (B) pitch direction discrimination. The dotted line

represents the 500 Hz base frequency, and the solid lines represent the auditory stimuli (discrete or gliding tones). The tones and the

silences between them were 600 ms in duration, and the excursion within the gliding tones was 100 ms in duration.
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sequence. Participants indicated the position of the ‘odd-one-out’

using a verbal response: ‘first’ or ‘last’.

Like the pitch change detection task, the pitch direction discrimina-

tion task (Fig. 1B) also required the participant to identify the

‘odd-one-out’ of three sounds centred on 500 Hz. Here, all sounds

contained pitch glides: two in one direction; the other (‘odd-one-

out’) in the opposite direction. Again, the target appeared in the

first or last position.

Adaptive-tracking was used, with a ‘2 down, 1 up’ staircase method

and a variable change in step size. Starting with a default excursion of

six semitones, the initial step size was one semitone, reducing to

0.1 semitones after four reversals and 0.02 semitones after eight

reversals. The session was terminated after 14 track reversals and

the threshold was calculated as the mean excursion value of the

target glide for the last six reversals.

Statistical analyses
Statistical analyses were conducted in R (R Development Core Team,

2009). Since most of the data deviated significantly from a normal

distribution (Shapiro–Wilk normality tests), non-parametric tests were

performed on all data. Specifically, Wilcoxon rank sum tests

(two-sided) were used for between-groups comparisons, Wilcoxon

signed rank tests (two-sided) for within-group between-tasks compari-

sons, and Kendall’s � (one-sided) for correlation analyses. We do not

report correlation analyses for the control participants because ceiling

effects in this group would make interpretation of such analyses

problematic.

Results

Statement–question discrimination
Performance on the three discrimination tasks was calculated in

terms of ‘percentage of hits–percentage of false alarms’ (individual

scores can be seen in Supplementary material 4). A hit was

defined as a different pair judged as different, and a false alarm

was defined as a same pair judged as different. ‘Percentage of hits

– percentage of false alarms’ was the difference between percent-

age of hits (across 18 trials) and percentage of false alarms (across

18 trials). Figure 2 shows boxplots of individual ‘percentage of

hits–percentage of false alarms’ scores on the three discrimination

tasks from the two groups.

Wilcoxon rank sum tests revealed that the amusic group per-

formed significantly worse than the control group on all three

discrimination tasks [natural speech: amusics mean (SD): 57.6

(33.3), controls: 96.9 (5.4), W = 9.5, P50.0001; gliding tones:

amusics: 76.0 (15.8), controls: 93.7 (6.4), W = 30, P = 0.0002;

nonsense speech: amusics: 45.8 (30.5), controls: 95.1 (6.7),

W = 5.5, P50.0001].

Pair-wise comparisons were done to examine performance dif-

ferences across the three discrimination tasks for both amusics and

controls. Amusics performed significantly better on gliding tones

discrimination than on natural speech discrimination [mean differ-

ence (SD): 18.4 (29.7), Wilcoxon signed rank test V = 25.5,

P = 0.03], which was in turn significantly better than nonsense

speech discrimination [mean difference (SD): 11.8 (20.0), V = 89,

P = 0.02]. Amusics’ performance on gliding tones discrimination

was also significantly better than nonsense speech discrimination

[mean difference (SD): 30.2 (24.7), V = 118, P = 0.001]. There was

no significant difference in performance across the three different

types of discrimination tasks for controls (all P40.05), which may

reflect a ceiling effect.

Analysis of the errors made by amusics on natural speech dis-

crimination revealed that there were significantly more misses than

false alarms (84.4 versus 15.6% of the total errors, �2= 33.99,

df = 15, P = 0.003). A similar pattern was also seen in amusics’

performance on discrimination of gliding tones (misses: 85.5%;

false alarms: 14.5%; �2 = 26.85, df = 15, P = 0.03) and nonsense

speech (misses: 84.0%; false alarms: 16.0%; �2 = 57.11, df = 15,

P50.0001). These findings confirm that errors mainly arose

Natural speech Gliding tones Nonsense speech

Amusic Control Amusic Control Amusic Control

Figure 2 Boxplots of the ‘percentage of hits – percentage of false alarms’ (%H – %FA) scores of the amusic and control participants on

the three discrimination tasks: (A) natural speech, (B) gliding tones and (C) nonsense speech. These boxplots contain the extreme of the

lower whisker, the lower ‘hinge’, the median, the upper ‘hinge’ and the extreme of the upper whisker. The two ‘hinges’ are the first and

third quartile, and the whiskers extend to the most extreme data point which is no more than 1.5 times the interquartile range from the

box. The black dots denote individual measurements of the 16 participants in each group, with those arranged at the same level

horizontally having the same value. The data points that lie beyond the extremes of the whiskers are outliers, which are further denoted by

small open circles.

1686 | Brain 2010: 133; 1682–1693 F. Liu et al.

 at U
C

L Library S
ervices on June 17, 2010 

http://brain.oxfordjournals.org
D

ow
nloaded from

 

http://brain.oxfordjournals.org


because amusics failed to detect subtle differences between

spoken utterances (Patel et al., 2008).

Correlation analyses (Fig. 3) across the three discrimination tasks

revealed a significant positive association between amusics’ per-

formance on all three tasks (natural speech and gliding tones:

z = 2.03, P = 0.02, � = 0.40; nonsense speech and gliding tones:

z = 2.52, P = 0.01, � = 0.49; natural speech and nonsense speech:

z = 3.33, P = 0.0004, � = 0.64).

In order to examine what might have caused amusics’ discrim-

ination inaccuracy in the three tasks, we categorized trials into

those which were correctly versus incorrectly discriminated by

the amusic participants. We then compared final glide sizes,

rates and durations between correct and incorrect trials for state-

ments and questions of all three types of stimuli. Wilcoxon rank

sum tests revealed that for natural speech and nonsense speech

stimuli, incorrect trials had significantly smaller glide sizes than

correct trials in statements (natural speech: W = 14 479.5,

P = 0.003; nonsense speech: W = 17 519.5, P = 0.01), but not in

questions (natural speech: W = 18 630, P = 0.66; nonsense

speech: W = 21 864, P = 0.36). For gliding tones, incorrect trials

had significantly smaller glide sizes than correct trials in both state-

ments (W = 8648, P = 0.001) and questions (W = 9360, P = 0.01).

There was no statistically significant difference in glide rate across

incorrect versus correct trials in either statements or questions for

all three types of stimuli. The effect of glide duration was only

seen in gliding tones questions, with incorrect trials having signifi-

cantly smaller glide durations than correct trials (W = 7136,

P50.0001).

Logistic regressions of the counts of correct and incorrect re-

sponses by amusics on the length of the sentences (number of

syllables) revealed no significant length effect for natural speech

(�2= 0.97, df = 1, P = 0.33) or nonsense speech (�2 = 0.34, df = 1,

P = 0.56) discrimination. For gliding tones stimuli, the longer the

sentence, the better was the discrimination (�2 = 13.01, df = 1,

P = 0.0003). These results demonstrate that amusics’ discrimination

inaccuracy is unlikely to have been caused by memory deficiency.

Statement–question identification and
imitation
Performance on the identification task was calculated in terms of

the percentage of correct responses across the 36 trials. Figure 4A

shows boxplots of individual performance from the two groups

(Supplementary material 4). Wilcoxon rank sum test revealed sig-

nificant group difference for the statement–question identification

task, with amusics showing significantly worse performance than

controls [amusics mean (SD): 71.7 (10.3), controls: 92.4 (10.9),

W = 238.5, P50.0001].

The imitation task explicitly required the participants to mirror

exactly the pitch patterns of the model sentences, thus imitations

were scored as correct only if they shared the same sign in glide

size as the models (i.e. statements imitated as statements would

have negative glide sizes, and questions imitated as questions with

final rises would have positive glide sizes; see Supplementary

material 5 for details), yielding percentage of correct responses

scores for each participant (Fig. 4B). Wilcoxon rank sum test

showed that controls did significantly better than amusics on imi-

tating the pitch patterns of the model sentences [amusics mean

(SD): 86.3 (12.6), controls: 97.7 (2.9), W = 212, P = 0.001].

Interestingly, we observed that although some participants imi-

tated questions incorrectly (with a negative, as opposed to positive

final glide size), they nonetheless produced a pitch pattern that

conformed to other legitimate ways of producing a question in

British English (Grabe, 2002), suggesting that these participants

were sometimes only able to imitate the question by asking it in

their own way, rather than mimicking the pitch pattern of the

model. However, this was as likely to occur in controls as in amu-

sics: for controls, 4% of questions (11 out of 288) were incorrectly

imitated; 27% of which (three out of 11) were imitated using a

legitimate question intonation; for amusics, 21% of questions (61

out of 288) were imitated incorrectly, of which 31% (19 out of

61) were imitated using a legitimate question intonation (see

Supplementary material 5 for details).
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Figure 3 Scatter plots across the three discrimination tasks: (A) gliding tones scores against natural speech scores, (B) nonsense speech
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NS = non-significant.
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As shown in Fig. 4C, both groups (but particularly the amusic

group) performed significantly better on the imitation task com-

pared with the identification task [Wilcoxon signed rank test: amu-

sics’ mean difference (SD): 14.6 (16.9), V = 120.5, P = 0.007;

controls: 5.4 (11.1), V = 58, P = 0.03], constituting a pattern of

identification–imitation dissociation at the group level: better imi-

tation than identification of statements and questions. As indicated

in Fig. 4D, there was no significant correlation between identifi-

cation and imitation scores for either group [(Kendall’s �

(one-sided): correlation between amusics’ identification and imita-

tion scores: z =�0.88, P = 0.81, � =�0.18; controls: z = 0.51,

P = 0.30, � = 0.11].

Pitch threshold tasks
Figure 5 shows the boxplots of individual pitch thresholds in the

two psychophysical tasks from the amusic and control groups

(Supplementary material 4). As found in previous studies (e.g.

Foxton et al., 2004), there was substantial overlap in pitch thresh-

olds between the two groups in both tasks, with some amusics

having thresholds within the control range.

Wilcoxon rank sum tests suggested that amusics as a group had

significantly higher thresholds than controls in both pitch threshold

tasks. The group difference for the pitch direction discrimination

task was more pronounced [amusics’ mean (SD): 0.86 (0.87); con-

trols: 0.20 (0.12), W = 212, P = 0.0003] than that for the pitch

change detection task [amusics: 0.28 (0.28); controls: 0.15

(0.06), W = 193.5, P = 0.01].

Correlations between intonation
performance and pitch thresholds
Correlation analyses were conducted between participants’ per-

formance on the five intonation tasks and their pitch thresholds.
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Figure 6 shows the corresponding scatter plots between

participants’ ‘percentage of hits–percentage of false alarms’

scores on the three discrimination tasks and their pitch thresholds.

For amusics, pitch change detection thresholds were negatively

correlated with their performance on gliding tones discrimination

(with marginal significance as shown in Fig. 6B: when the outlier

was included: z =�1.97, P = 0.02, � =�0.38; when the outlier was

removed: z =�1.42, P = 0.08, � =�0.29), but not with their

performance on natural speech (z =�0.73, P = 0.23, � =�0.14)

or nonsense speech (z =�1.22, P = 0.11, � =�0.23) discrimination.

In contrast, their pitch direction discrimination thresholds were

negatively correlated with their performance on all three discrim-

ination tasks (the smaller the threshold, the better the

discrimination performance; pitch direction and natural speech:

z =�1.80, P = 0.04, � =�0.35; pitch direction and gliding tones:

z =�2.87, P = 0.002, � =�0.57; pitch direction and nonsense

speech: z =�2.54, P = 0.01, � =�0.50). This suggests that amu-

sics’ poor performance on the statement–question discrimination

tasks is linked to a psychophysical pitch direction discrimination

deficit.

Figure 7 shows scatter plots of participants’ percentage of cor-

rect responses scores on the statement–question identification and

imitation tasks against their pitch thresholds. For amusics, there

was a negative association between their imitation scores and

pitch direction discrimination thresholds (the smaller the thresh-

olds, the better the imitation; z =�1.71, P = 0.04, � =�0.34), but

no significant relationship was found for other three pairs of tasks

(identification and pitch change detection: z =�1.14, P = 0.13,

� =�0.22; imitation and pitch change detection: z = 0.28,

P = 0.61, � = 0.05; identification and pitch direction discrimination:

z =�1.25, P = 0.11, � =�0.25).

Discussion

Congenital amusia is not
domain-specific
The extent to which amusia can be considered domain-specific is

an actively debated question. While amusics have been shown to

have deficits in other domains (Douglas and Bilkey, 2007;

Thompson, 2007; Jones et al., 2009a, b), conflicting results have

been reported for their speech intonation perception abilities.

Ayotte et al. (2002) found that amusics performed as well as

controls on both identifying and discriminating the focus (shift in

location) and sentence type information (statement versus ques-

tion) of spoken utterances. However, they did significantly worse

than controls on discrimination of the discrete tone analogues of

these focus-shift and statement–question pairs. Similarly, in Patel

et al. (2005), amusics achieved good performance on discrimin-

ation of focus-shift pairs in natural speech, but did poorly on both

discrete and gliding tone analogues. These results suggested that

the pitch processing deficits in amusia were domain-specific such

that pitch processing within speech is preserved. However, as

noted by Patel (2008), any dissociation in performance between

natural speech and tone analogues in the context of focus-shift

utterances may be accounted for by the different potential these

stimuli offer for ‘semantic recoding’. In other words, while salient

pitch changes in a linguistic utterance can be ‘tagged’ to a par-

ticular syllable, the same pitch change in a delexicalized context

must be encoded as part of the entire pitch pattern, which may

exceed memory limits in amusics (Tillmann et al., 2009;

Williamson et al., 2010). In order to compare discrimination of

pitch changes within, versus outside, speech, it is thus necessary

to use statement–question discrimination, where the pitch patterns

are identical until the final word such that the memory load for the

speech and tone analogues is equivalent for both these conditions.

Using precisely this approach, Patel et al. (2008) found that 30%

of amusics exhibited worse performance on discrimination of

statements and questions in natural speech than discrete tone

analogues, pointing to speech intonation perception deficits in a

minority of amusics. Given that the stimuli used in Patel et al.

(2008) had relatively large pitch excursions, this raised the possi-

bility that speech intonation perception deficits would be evident

in the majority of amusics if tested using stimuli that included

smaller excursions within natural speech.

Thus the present study used relatively small but ecologically

valid intonational pitch contrasts, and examined statement–ques-

tion perception abilities of 16 British amusics and 16 matched

controls. Compared with controls, amusics demonstrated impaired

ability to discriminate between statements and questions that

differed mainly in the direction of final pitch glides, regardless of

whether these stimuli were natural speech or analogues made

from gliding tones and nonsense speech. These findings extend

those of Patel et al. (2008), where only 30% of amusics had

difficulties in distinguishing between natural speech statements

and questions, and suggest that, for the majority of amusics,

intonation perception is not as robust as controls. Acoustic analysis

of the final pitch glides in correct versus incorrect trials revealed

that, in most cases, incorrectly discriminated trials had significantly

smaller final glide sizes than correctly discriminated trials.

Furthermore, a significant negative correlation was observed

between amusics’ performance on statement–question discrimin-

ation and their psychophysical pitch direction discrimination

thresholds (the better the discrimination, the smaller the thresh-

olds). Finally, amusics also showed impaired ability to identify and

imitate statements and questions in natural speech, and their

imitation performance was also negatively correlated with their

pitch direction discrimination thresholds. These results indicate

that under laboratory conditions, it is possible to observe cases

of speech intonation perception deficits in amusics when

the sizes of intonational pitch contrasts are small, providing

evidence that amusia involves a pitch direction discrimination def-

icit that is domain-general rather than specific to the musical

domain.

It is worth noting that previous authors have acknowledged that

the deficit may be ‘music-relevant’, rather than ‘music-specific’,

owing to the smaller pitch changes utilized in music, as opposed

to speech (Peretz and Hyde, 2003; Patel, 2008). However, the

present study revealed deficits in the perception of speech inton-

ation using real-world natural speech stimuli. Thus, even if natural

speech in everyday situations is rarely problematic for amusics

(presumably due to the presence of additional cues to meaning),
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the present study demonstrates that pitch deficits in amusia can be

behaviourally relevant for both speech and music. It is also inter-

esting to note that data from our language questionnaire

(Supplementary material 3) suggest that the percentage of

people who reported difficulties in speaker identification and rec-

ognition of regional/foreign accents was bigger in the amusic

group than in the control group. We hypothesize that

carefully-designed experimental studies involving subtle differ-

ences in speaker voices and speech accents may reveal deficits

in amusic participants.

As with previous studies of amusia, there was significant vari-

ability in performance across the amusic group, with one quarter

of participants behaving like controls in the discrimination tasks

(Supplementary material 4). However, it is not simply the case

that these participants are less severely affected in their musical

perception, since no significant correlation was found between

amusics’ performance on intonation tasks and their scores on

MBEA subtests (Kendall’s �: P40.05). It remains an issue for

future research to determine why a small subgroup of amusics

nevertheless performs well on tests of pitch direction and inton-

ation discrimination.

Identification–imitation dissociation in
congenital amusia
While amusics performed worse than controls on both identifica-

tion and imitation in the present study, both groups—but

particularly the amusic group—showed superior performance for

imitation compared with identification. This is somewhat similar to

the results reported in Loui et al. (2008), although the dissociation

reported in that study (production of a pitch interval better than

perception, measured by imitation and labelling, respectively) held

for amusics alone. While the dissociation reported for amusics in

Loui et al. (2008) follows the criteria for a ‘classical dissociation’

(task A performed in the normal range, task B performed below

the normal range), the pattern of dissociation found in the current

study for the amusic group follows the criteria for a ‘strong dis-

sociation’, in which neither task is performed at a normal level, but

task A (imitation) was performed very much better than task B

(Shallice, 1988, p. 227–8). While this pattern held for amusics at

the group level, some individuals showed the reverse of this, pro-

ducing incorrect imitations that, nonetheless, conformed to legit-

imate ways of asking a question in British English (Grabe, 2002),

suggesting that these individuals had correctly discerned that ut-

terance as a statement or question but were unable to mimic the

utterance in another’s style. There was some evidence of this in

two control participants as well but when prompted they were

able to adjust their motor programmes, while the same was not

true of the amusic participants. British English provides a particu-

larly interesting model for addressing the extent to which individ-

uals can modify their own intonation patterns to mimic those of

another, given the potential for questions to be realized in several

different ways. In future studies it would be important to investi-

gate the relationship explicitly between pitch patterns used in
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spontaneous and imitated speech, in order to examine the extent

to which amusics can match pitch patterns that may not be

common to their action repertoire, thus informing discussions on

the coupling between perception and action (Bosshardt et al.,

1997; Braun et al., 2006; Loui et al., 2008; Over and Gattis,

2010).

Glide rate versus glide size/duration
In Patel et al. (2008), acoustic analyses of correctly versus incor-

rectly discriminated speech pairs by the 30% of British amusics

who showed statement–question discrimination deficits indicated

that final glide rates were slower in incorrectly versus correctly

discriminated trials. However, this pattern did not hold in a sep-

arate group of French amusics performing a similar task in their

native language. Analysis of the current data also found no rate

difference for correctly versus incorrectly discriminated final glides

by our amusic participants. Rather, their errors were associated

with reduced final glide sizes in natural and nonsense speech

statements and in gliding tones statements and questions.

Furthermore, in gliding tones, incorrectly discriminated questions

had significantly smaller glide durations than correctly discrimi-

nated ones. The discrepancy in the role of glide rate versus glide

size/duration in amusics’ discrimination inaccuracy may be due

to different pitch contrasts involved as in Patel et al. (2008) and

the current study. When final glides are large in size (on average

5–12 semitones) as in Patel et al. (2008), glide rate may play an

important role in one’s discrimination of pitch directions: the faster

the rate, the better the discrimination. When final glide sizes are

relatively small as in the current study (on average 4–5 semitones),

glide rate may play a less important role than glide size/duration in

one’s discrimination of pitch directions. It will be of interest to

investigate this issue further in future studies.

Pitch thresholds in speech versus
non-speech contexts
In the current study, the amusic group showed significantly higher

thresholds than the control group in both pitch threshold tasks.

However, most amusics achieved thresholds of less than one semi-

tone for both detection of pitch change and discrimination of pitch

direction. Given that the smallest glide size in our intonation tasks

was 2.4 semitones, which exceeded all but one amusic’s pitch

direction discrimination threshold, one may wonder why the

amusic group still encountered problems in intonation perception.

One possibility is that people have different pitch thresholds in

speech versus non-speech contexts. As reviewed by Moore

(2008), F0 contrasts that convey linguistic meaning are much

larger than psychophysically obtained pitch thresholds. However,

despite the likely absolute differences in threshold for pitch

changes in speech versus non-speech, the relationship between

thresholds across the two domains can be seen in the present

study, since in most cases, the trials which were incorrectly dis-

criminated by amusics had significantly smaller glide sizes than

those which were correctly discriminated. Furthermore, amusics’

pitch direction discrimination thresholds were negatively correlated

with their performance on the three statement–question

discrimination tasks: the smaller the pitch threshold, the better

the performance on intonation perception.

Conclusion
In summary, despite reporting normal speech communication abil-

ities in language questionnaires, the amusic group in the current

study showed a statement–question discrimination deficit when

exposed to small pitch direction contrasts at the sentence-final

position. Compared with controls, the amusic group also showed

impaired performance on statement–question identification and

imitation. Except for statement–question identification, amusics’

performance on intonation tasks appeared related to a psycho-

physical pitch direction discrimination deficit. These findings indi-

cate that congenital amusia is not a music-specific disorder, and

support previous evidence that the processing of pitch within and

outside language may share common mechanisms.
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