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A RARE VIEW OF CODING MUTATIONS AND PLASMA LIPID LEVELS. Aniruddh P.
Patel, Sekar Kathiresan. Center for Human Genetics Research, Massachusetts
General Hospital, Harvard Medical School, Boston, MA and Program in Medical and
Population Genetics, the Broad Institute of Harvard and MIT, Cambridge, MA
(Sponsored by Richard P. Lifton, Department of Genetics, Yale University School of
Medicine, New Haven, CT).

Plasma low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein
cholesterol (HDL-C), and triglycerides (TG) are quantitative, heritable risk factors
for coronary heart disease. Genome-wide association screens (GWAS) of common
DNA sequence variants have identified many loci associated with plasma lipid levels.
Targeted re-sequencing of exons has been proposed as a strategy to pinpoint causal
variants and genes based in GWAS loci. Additionally, genotyping of rare and low
frequency variants in large cohorts using an exome array has been proposed as a
method to assess the contribution of rare variation to plasma lipid levels at the
population level.

We tested the hypothesis that each genomic region identified with a
significant HDL-C level association by GWA studies contains at least one gene causal
for HDL-C metabolism. We performed solution-based hybrid selection of 4,118
exons at 407 genes within 47 loci associated with HDL-C and subsequently
sequenced individuals drawn from the extremes of the HDL-C distribution (high
HDL-C, n=385, mean=102 mg/dl or low HDL-C, n=334, mean=32 mg/dl) using next-
generation sequencing technology. We tested whether rare coding sequence
variants, individually or aggregated within a gene, were associated with HDL-C. To
replicate findings, we performed follow-up genotyping using the Exome Array

(Ilumina HumanExome BeadChip) in independent participants with extremely high



HDL-C (n=514, mean=98 mg/dl) or low HDL-C (n=580, mean=32 mg/dl). Through
sequencing, we identified 8,138 rare (minor allele frequency < 5%) missense,
nonsense, or splice site variants. Across discovery sequencing and replication
genotyping, we found 3 variants to be significantly associated with HDL-C. Of these,
none were novel. In gene-level association analyses where rare variants within each
gene are collapsed, only the CETP gene was associated with plasma HDL-C (P=2.0 x
10-%). After sequencing genes from GWAS loci in participants with extremely high or
low HDL-C, we did not identify any new rare coding sequence variants with a strong
effect on HDL-C. These results provide insight regarding the design of similar
sequencing studies for cardiovascular traits with respect to sample size, follow-up,

and analysis methodology.

We then tested the hypothesis that rare coding and splice-site mutations
contribute to inter-individual variability in plasma lipid concentrations in the
population. We contributed to the design of a new, rare-variant genotyping array
based on the sequences of the protein-coding regions of ~18,500 genes (“the
exome”) in >12,000 individuals. This genotyping array (“the Exome Chip”) includes
approximately 250,000 non-synonymous and splice-site mutations and is estimated
to capture nearly all such variation with a >1:1000 allele frequency in the European
population. We obtained Exome Chip genotype data in >130,000 individuals from
58 studies. Within each study, we tested the association of plasma lipids with
individual rare variants. To combine statistical evidence across studies, we
performed meta-analysis. Top results for each trait replicated established

associations in the genes APOE, CETP, and APOA5 for LDL-C, HDL-C, and TG,



respectively. We identified 11 new genes associated with plasma lipid levels: ABCA6
with LDL-C (C1359R, frequency = 1:100, effect=+8.2 mg/dl, P=9.7 x 10-32, SERPINA
with LDL-C (E366K, frequency = 2:100, effect = +3.1 mg/dl, P=2.3 x 10-7), REST with
LDL-C (R645W, frequency = 6:10000, effect = +13.7 mg/dl, P=5.0 x 10-7), FBLN1
with LDL-C (H695R, frequency = 2:100, effect = -2.7 mg/dl, P=5.3 x 10-7), CCDC117
with LDL-C (T232], frequency = 9:1000, effect = -4.3 mg/dl, P=7.3 x 10-7), TMED6
with HDL-C (F6L, frequency = 4:100, effect = -0.8 mg/dl, P=4.4 x 10-%), CDC25A with
HDL-C (Q24H, frequency = 3:100, effect = -1.0 mg/dl, P=8.4 x 10-8), MAP1A (P2349L,
frequency = 3:100) with HDL-C (effect=-1.4mg/dl, P=3.9 x 10-14) and TG
(effect=+8.4mg/dl, P=3.2 x 10-26), PRRC2A with TG (S1219Y, frequency = 2:100,
effect = +6.6 mg/dl, P=4.6 x 10-17), COL18A1 with TG (V125I, frequency = 1:1000,
effect = +18.0 mg/dl, P=1.3 x 10-7), and EDEM3 with TG (P746S, frequency = 1:100,
effect =-5.4 mg/dl, P=2.4 x 10°7).

In addition, at some genes previously known to affect lipids, we identified
new associations for variants: APOC3 (R19Stop, frequency = 3:10,000) with HDL
(effect=+11mg/dl, P=9.9 x 10-12) and with TG (effect=-65.9mg/dl, P=5.8 x 10-23);
(splicesite IVS2+1 G>A, frequency = 2:1000) with HDL (effect=+10.6mg/dl, P=3.5 x
10-42) and with TG (effect=-65.2mg/dl, P=2.0 x 10-81). Using the Exome Chip rare
variant genotyping array, we have discovered several new genes and variants

associated with plasma lipids.
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INTRODUCTION

Cardiovascular disease (CVD) is the leading cause of death in the United
States and in the world.12 In addition to being the cause of death for almost 600,000
individuals in the United States each year, CVD accounts for much of the nation’s
morbidity and health care system expenditure. In the US, 11.5% of non-
institutionalized adults have been diagnosed with heart disease, and it is the
primary diagnosis for over 12.4 million annual physician office visits and over 3.7
million hospital discharges, with the average length of inpatient stay being 4.6 days.
Much of the mortality and morbidity from CVD stems from ischemic coronary heart
disease (CHD), which includes angina pectoris, myocardial infarction, silent
myocardial ischemia, and mortality resulting from coronary heart disease3 A
deeper understanding of the causes of CHD will help guide prevention and

treatment measures to decrease its burden of morbidty and mortality.

Risk Factors for Coronary Heart Disease

The Framingham Heart Study first identified common risk factors
contributing to CHD after following the development of disease in over 10,000
individuals across two generations through their lifetimes. In the 1960's, the Study
linked cigarette smoking, elevated cholesterol level, hypertension,
electrocardiogram abnormalities, obesity, and physical inactivity with increased risk
of heart disease.* In the 1970's the Study reported heart disease associations with

diabetes, menopause, and psychosocial factors.



These risk factors were incorporated into the calculation of a Framingham
Risk score adjusted for sex and age, which has been used by physicians to predict
CHD risk in patients without disease.> Using the Framingham data, the lifetime risk
of developing CHD calculated at age 40 was one in two for men and one in three for
women in the US, with the risk decreasing to one in three for men and one in four
for women when calculated at 70 years.® A recent meta-analysis of over 250,000
individuals confirmed that optimization of the burden of modifiable risk factors
such as total cholesterol level, blood pressure, smoking, and diabetes resulted in a
significant decrease in the lifetime risk of developing cardiovascular disease.”

Of the largely lifestyle modifiable risk factors, diabetes, hypertension, and
cholesterol levels are complex traits with a significant unmodifiable genetic
component predisposing individuals to disease. In the past few decades, hundreds
of genes and loci have been associated with these complex traits. Linkage and
sequencing studies have identified numerous genes with rare variants involved in
the pathogenesis of type 2 diabetes,8-1¢ and a series of GWA studies have reported
common variants influencing risk of developing the disease.17-22 Consortia have also
reported common variants with significant associations with hypertension.23-2> Qur
group (laboratory of R.P. Lifton) has investigated and reported a number of genes
involved in the pathogenesis of Mendelian hypertension syndromes.26-35
Furthermore, our group (laboratory of S. Kathiresan) has reported several genes
and variants contributing to variation of plasma lipid levels in families and in the

population.



Role of Plasma Lipids in Coronary Heart Disease

Human plasma contains five major lipid subgroups differentiated by their
density and apoprotein content: high density lipoprotein (HDL), low density
lipoprotein (LDL), intermediate density lipoprotein (IDL), very low density
lipoprotein (VLDL), and chylomicrons. Naturally hydrophobic plasma lipids are
made soluble in plasma through encapsulation by lipoproteins that carry lipids to
tissues to serve as fuel, structural components, and building blocks for steroid
hormones and bile acids. The lipoprotein particle is composed of a shell of
phospholipids, cholesterol, and apoproteins filled with triglycerides and cholesterol
esters. Lipoprotein particles are classified by their density and apoprotein content,
with LDL carrying mostly cholesterol and VLDL and chylomicrons carrying mostly
triglycerides (Figure 1). Triglyceride measurements capture mainly chylomicrons
and VLDL particles, LDL-C measurements capture LDL particles, and HDL-C
measurements capture HDL particles.

Total cholesterol, LDL-C, HDL-C, and triglyceride levels are lab tests
commonly ordered as part of a lipid panel for the screening and monitoring of
coronary heart disease. Total cholesterol and HDL-C are measured using direct
methods and are reliable regardless of whether the individual is fasting or not
fasting. Triglyceride levels must be measured in the non-fasting state for baseline
uniformity. The LDL-C level is calculated using the Friedewald equation where
HDL-C and triglyceride components are removed from the total cholesterol value:

(LDL =TC - HDL - (TG/5)).3¢ This method of obtaining LDL-C is only reliable in



individuals who are fasting and without other presentations of hypertriglyceridemia

(TG>400 mg/dl).

Figure 1: Classification and Composition of Plasma Lipid Particles
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Flotation Density (Ultracentrifugation)
Plasma lipid particles are classified based on their flotation density/ultracentrifugation. The physical
properties, apolipoprotein content, and plasma lipid composition of the different particles are shown.
Figure from Saland and Ginsberg, 2007.37

Lifestyle factors play a large role in determining plasma lipid levels. A diet
high in cholesterol and saturated fats from animal products or hydrogenated oils
raises plasma cholesterol and triglyceride levels, but diets with higher proportions
of polyunsaturated fats lower total cholesterol levels. Physical activity and
moderate amounts of meat and ethanol intake help raise HDL-C levels, but
inactivity, smoking, and obesity are associated with decreased HDL-C levels.38

Dietary cholesterol and fatty acids are absorbed through the intestinal
epithelium, where fatty acids are combined with glycerol to form triglycerides and
cholesterol is esterified. These lipids are packaged into chylomicrons and
transported to the tissues via the circulation. The liver also synthesizes

triglycerides and cholesterol esters and assembles them into VLDL particles for



secretion into the blood stream and delivery to the tissues. As VLDL particles are
depleted of their triglyceride content, their density increases. These remnants are
then cleared by the liver along with the chylomicron remnants, or they are
remodeled into LDL particles.3® Lipid metabolism plays a key role in the

pathogenesis of CHD and atheroma formation and modification. (Figure 2)

Figure 2: Overview of Lipid Metabolism and Role in Atherosclerosis
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Chylomicron particles generated in the gastrointestinal tract and VLDL and LDL particles generated
in the liver contribute to atheroma formation in the arterial wall. HDL particles help transport
cholesterol from the tissues to the liver. Figure adapted from Badimén and Ibafez, 2010.40

Low-density lipoprotein cholesterol is primarily responsible for
atherosclerosis. LDL-C is first transported into the artery wall though a
concentration-dependent process which is accelerated in the setting of endothelial
injury and hypercholesterolemia. The LDL-C retained in the vessel intima is then
oxidized by free radical species generated by nearby endothelial cells and
macrophages. Local macrophages phagocytize the oxidized LDL-C through the

scavenger receptor and transform into foam cells storing massive amounts of



oxidized lipids. Oxidized LDL-C stimulates an inflammatory response through the
release of cytokines and chemokines by local cells that leads to monocyte and
lymphocyte recruitment and vascular smooth muscle cell proliferation. This results
in the development of a raised atheromatous plaque with a lipid core and fibrous
cap which can obstruct coronary blood flow, weaken the vessel wall leading to
aneurysm formation, and rupture to lead to thrombosis and myocardial infarction.38

In contrast to LDL-C, HDL-C has been shown to have a cardioprotective
function. HDL is the primary mediator of reverse cholesterol transport, which
removes cholesterol from peripheral tissues and brings it to the liver for biliary
excretion. Furthermore, HDL has a number of non-cholesterol-mediated functions
that may contribute to endothelial integrity and atheroprotection, such as anti-
inflammatory effects, anti-oxidant effects, and anti-thrombotic effects.4!

The role of triglyceride levels in coronary heart disease remains unclear
because hypertriglyceridemia usually occurs in the setting of low HDL levels and
increased LDL levels.42 VLDL triglyceride particles enriched in apolipoprotein E or
B have been shown to increase cholesterol uptake and oxidation in atheromas.*3
Furthermore, hypertriglyceridemia is conducive to hypercoagulability due to
increased blood viscosity.*4

Although the initial epidemiological studies have shown that plasma lipid
levels have an association with coronary heart disease and functional studies have
postulated the general role of lipids in metabolism, these studies alone cannot
distinguish if lipids play a pathologically causal role or are just markers of

underlying disease. The gold standard for assessing such causality is through large-



scale randomized trials. For LDL-C, results from several, large, randomized
controlled trials of statin medications that lower plasma LDL-C levels and rates of
myocardial infarction suggest that LDL-C plays a causal role in coronary heart
disease.*>-4? Large randomized controlled trials using niacin and torcetrapib to raise
HDL-C levels did not result in a significant reduction in coronary heart disease,
suggesting that HDL-C does not play a causal role in the underlying
pathophysiology. Randomized controlled trials using fish oils and fibrates to lower
triglyceride levels had mixed results in altering the risk of coronary heart disease,
and the causal role of triglycerides is difficult to interpret because the administered
medications have significant effects on the other lipid fractions.>051

Analyzing lipid levels in the context inherited DNA variation may also be
employed to distinguish causality of a biomarker using the theory of Mendelian
randomization, which relies on the fact that genotypes are randomly assigned at
meiosis and remain independent of non-genetic confounders or other disease
processes.>? In this sense, the assignment of genotypes at birth is analogous to the
randomized, double-blinded administration of a medication in a clinical trial. Based
on a representative set of significant SNPs tested using Mendelian randomization,
our group recently reported evidence suggesting independent, causal roles of TG, in
addition to LDL-C, in the pathogenesis of CHD.53 We also reported similar evidence
suggesting that some common genetic mechanisms that raise HDL-C do not

contribute to CHD risk.54



Genetics of Plasma Lipid Levels

Many groups have determined that a large portion of the variation that we
see in plasma lipid levels at the population level is heritable, or explained by
inherited genetic differences.>> Heritability estimates of lipid levels based on the
Framingham data were calculated to be 66% for LDL-C, 69% for HDL-C, and 58% for
TG.>¢ The systematic study of these genetic differences can help reveal causal
biologic mechanisms of lipid metabolism. Studies of linkage analysis and candidate
genes were first used to identify genes implicated in lipid metabolism. The
development of DNA sequencing technologies has helped fine map larger and larger
genetic regions in individuals to discover variants influencing plasma lipid levels.>”
Furthermore, the completion of the Human Genome Project and the International
Haplotype Map Project has further expanded investigative possibilities by allowing
genome-wide screening of common variants to discover novel associations with
plasma lipids.>85° These insights from genetics can be applied to the development
novel therapeutics to treat at risk patients.®0

Plasma lipid levels are quantitative traits with complex inheritance patterns
in which multiple genes and non-genetic factors collude to influence the final
phenotype. The genetic architecture underlying plasma lipids can be divided and
examined by the minor allele frequency and effect sizes of significant variant
associations (Figure 3). Very rare variants are those with a frequency of less than
0.1%, reflecting that fewer than 1 in 1000 people have the variant. These tend to
have a larger effect on plasma lipid levels and may need to be grouped together to

test their associations with lipid levels in aggregate. Low frequency variants are



defined as having allele frequencies between 0.1% and 5%, or 1:1000-1:20 in the
population. Common variants are those with a frequency of greater than 5%, or

>1:20 in the population, and they tend to have smaller effects on lipid levels.

Figure 3: Genetic Architecture of Complex Traits

“Low Frequency™
Variants

1:1000-1:20

Magnitude of Effect

Minor Allele Frequency in Population

Variants are grouped as very rare (<1:1000), low frequency (1:1000-1:20), and common (>1:20)
based on allele frequency, which tends to be inversely correlated with magnitude of effect. Adapted
from Kathiresan and Srivastava®®

Genome-wide linkage mapping in families with extreme lipid phenotypes has
identified over a dozen genes with very rare mutations responsible for Mendelian
dyslipidemias. Linkage and DNA sequencing analyses were first used to identify a
large deletion in the LDL receptor in a patient with familial hypercholesterolemia.t!
Further study of families with hypercholesterolemia with linkage analysis and
sequencing led to the identification of PCSK9 (inducer of LDL receptor degredation

in liver) and APOB (an LDL receptor ligand for uptake in tissues) as having casual
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roles in dyslipidemias.t263 Other genes discovered through similar methods include
ARH (an adaptor protein for LDLR) in autosomal recessive hypercholesterolemia
and ABCG5/ABCG8 (ATP-binding cassette transporters involved in biliary sterol
excretion) in sitosterolemia.t#¢> Recently, our lab used exome sequencing to
discover that rare mutations in ANGPTL3 (an inhibitor of lipoprotein lipase and
hepatic lipase) are responsible for combined hypolipidemia in a family with
markedly low levels of LDL-C, HDL-C, and TG in their plasma.t® Many of the genes
implicated in Mendelian dyslipidemias are in the vicinity of common variant
associations, some of which are targets of lipid lowering drugs. (Figure 4).

Figure 4: Overlap of Genetic Loci Causing Mendelian Dyslipidemias, Loci
Targeted by Lipid-Lowering Drugs, and Loci Identified in GWAS

Loci identified
PABPC4, EVI5, SORT1, in GWAS

ZNF648, MOSC1, GALNT2,

Loci causing IRF2BP2, GCKR, RAB3GAP1, COBLL1,
Mendelian ABCA1, ABCGS5, IRS1, RAF1, MSL2L1, KLHL8, SLC39A8,

dyslipidemic ABCGS, APOA1, ARL15, MAP3K1, TIMD4, IDOL, HFE, HLA,
syndromes APOA5, APOC2, APOE, C6orf106, FRK, CITED2, LPA, DNAH11, TYW1B,

LCAT, LDLR, LDLRAP1,
ANGPTLS, LIPC

MLXIPL, KLF14, PPP1R3B, PINX1, NAT2, CYP7A1,
TRPS1, TRIB1, PLEC1, TTC39B, ABO, JMJD1C,
CYP26A1, GPAM, AMPDS3, SPTY2D1, LRP4,
FADS1-2-3, UBASH3B, ST3GAL4, PDE3A,
LRP1, MVK, BRAP, HNF1A, SBNO1, ZNF664,
SCARBH1, LIPG, among others

Loci targeted
by lipid
lowering
therapies

GWAS loci are named for a plausible candidate gene in the proximity of the variant with the top
association. Many genes identified as causal in Mendelian dyslipidemias are near GWAS loci.
Medications currently target several of these genes. Figure from Kathiresan and Srivastava, 2012.60

Genome-wide association (GWA) studies have been used to identify common

variants associated with the plasma lipid levels through the efficient genotyping of
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hundreds of thousands of common single nucleotide polymorphisms (SNPs)
distributed throughout the genome. Significant associations detected through GWA
studies implicate not just the variant with the strongest signal, but also several
variants in the surrounding locus found to be in linkage disequilibrium with the
index signal. Our lab has helped lead a concerted effort in using genome-wide
association (GWA) mapping in populations to define many new loci related to
plasma lipids, with the most recent iteration cataloging common variants at 157 loci
with genome-wide significant associations.®’-71 Furthermore, our group has
reported that one of these common, noncoding GWAS-implicated variants at the
chromosome 1p13 locus is involved in a novel regulatory pathway where altered
transcription factor binding leads to altered expression of SORT1 (sortilin 1,
involved in pre-secretory degradation of VLDL-C) and altered risk for CHD.”2
Despite this progress in linkage analysis, sequencing technologies, and
genotyping capabilities, the identified alleles with significant associations explain
only a modest fraction of the overall variance in plasma lipid concentrations.
Moreover the common variant associations identified by GWA studies only
implicate a collection of variants in a general locus, and the true causes of the GWA
signals are unknown. For loci mapped using GWAS, we need to move from locus to
gene and pinpoint the specific causal gene and causal variant responsible for the
association. Furthermore, although family studies aid in the investigation of
Mendelian syndromes and GWA studies help uncover common variants with strong
associations, low frequency variants with allele frequencies of 1:1000-1:20 in

population are difficult to discover with the methods mentioned so far. The



12

contribution of rare and low frequency genetic variation at the population level is
unknown. Within the bounds of the exome, we need to interrogate the significance
of low frequency and rare variants in large cohorts to discover new genes

implicated in lipid metabolism and coronary heart disease.
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STRUCTURE OF THESIS

This thesis focuses on the role of rare variants and plasma lipid levels.
Genetic architecture generally determines the method of investigation. Mendelian
syndromes lend themselves to linkage and exome sequencing analysis in the context
of pedigrees with well-developed phenotypes. Common diseases and traits such as
plasma lipid levels tend to have polygenic contributions, and the minor allele

frequency range of interest determines method of inquiry (Figure 5).

Figure 5: Investigative Genetic Method by Trait Type and Frequency Range

Population/
Polygenetic

Mendelian/
Monogenetic

Very Rare Common
. Frequency .
Variants Variants Variants
<1000 41000 - 1220 S

Exome
Sequencing
Analysis

Linkage

Analysis
Exome Exome Array | Genome-wide

Sequencing Genotyping Association
Analysis Analysis Analysis

The investigative genetic method is determined by trait type and allele frequency of interest.

This thesis is divided into two chapters that cover two main research
projects completed over the past 20 months. The first chapter focuses on targeted
exome sequencing of previously identified HDL-C GWAS loci to identify rare coding
variants contributing to the initial association signals. The second chapter focuses
on an exome array meta-analysis of 130,000 individuals and reports the discovery

of novel genes with rare and low frequency variants associated with plasma lipids.
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PartI: Targeted Sequencing of GWAS Loci in Extremes of the High-density
Lipoprotein Cholesterol Distribution

BACKGROUND

High-density lipoprotein cholesterol (HDL-C) is a highly heritable risk factor for
coronary heart disease.* Genome-wide association (GWA) studies have identified
many new single nucleotide polymorphisms (SNP) related to HDL-C in the
population.17.67.6870,71,73-75 Most associated SNPs are non-coding (intergenic or
intronic) and fall in regions of linkage disequilibrium extending tens of thousands of
bases and containing many protein-coding genes. Thus, a major challenge at each
GWAS locus is to identify the culprit gene and variant responsible for the association
signal.

One approach to pinpoint causal genes and variants at GWAS loci is to
perform fine mapping through targeted sequencing. Sequencing may identify a
protein-altering variant in a gene, which if associated with HDL-C would suggest
that the gene is influencing HDL-C variation. The discovery of rare nonsense alleles
that affect a trait may be particularly informative. Targeted sequencing of GWAS
loci has been used to pinpoint independent rare variants and causal genes for
diabetes mellitus,’¢ fetal hemoglobin,’” age-related macular degeneration,’8-82 and

Crohn's disease.83
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HYPOTHESIS AND SPECIFIC AIMS
We hypothesized that each genomic region identified with a significant HDL-
C level association by GWA studies contains at least one gene causal for HDL-C
metabolism. Our specific aims were as follows:
1). Identified 47 GWAS loci for HDL-C, targeted all exons at 407 genes within
these genomic regions for sequencing, and sequenced targeted regions in
individuals with extremely high or low HDL-C.
2). Attempted replication in an independent sample through array-based
genotyping.
3). Assessed for novel, coding variants and genes with large effect in GWAS
loci associated with HDL-C to try to determine the functional HDL-C gene at

each locus.
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METHODS

Discovery Cohort Selection

Individuals of European ancestry who had an abnormally high or low HDL-C level
(<35 mg/dl for women and <28 mg/dl for men or > 100mg/dl for women and >80
mg/dl men) were recruited at the University of Pennsylvania to participate in the
study. Individuals with no history of liver disease or HIV and who were not
pregnant, nursing, or taking hormone replacement therapy or niacin had ~40cc of
blood drawn. Plasma lipid levels were measured, and whole genomic DNA was
extracted from the blood of these individuals. Individuals with HDL-C levels greater
than the 95th percentile were selected for targeted sequencing (n=389, mean HDL-C
=102 mg/dl). Healthy age and sex matched controls with plasma HDL-C levels <

25th percentile were also sequenced (n=387, mean HDL=32mg/dl) (Table 1).

Targeted Sequencing
We studied 47 loci previously mapped for HDL-C (P < 5 x 10-8) in a genome-wide
association study (GWAS) meta-analysis involving >100,000 individuals by the
Global Lipids Genetics Consortium.”’%71 For each locus, we selected all of the exons of
genes within 300 kb from the lead GWAS SNP identified in that locus. This
represented 4,118 exons at 407 genes. Solution-based hybrid selection was used to
select exons.84

To amplify exons, target-specific oligonucleotides 170 bases in length were
designed to cover the entire coding sequence (hybrid selection bait size: 262,873

bases). These 170-mers were flanked on both sides with universal primer sequence
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to allow for PCR amplification. A T7 promoter was added in a second round of PCR,
and in vitro transcription in the presence of biotin-UTP was performed to generate
single-stranded hybridization bait to capture targets of interest from the DNA
sample. Genomic DNA from individuals was randomly sheared and ligated to
[llumina sequencing adapters. The fragments of this sheared and ligated genomic
DNA were PCR amplified for 12 cycles and hybridized with biotinylated RNA bait.
The hybridized DNA was extracted and PCR amplified to generate 36-base
sequencing reads off of the Illumina adaptor sequence at the ends of each fragment.
Next generation sequencing reactions were performed using [llumina
Genome Analyzers. Base pairs were called and sequencing reads were aligned to the
human genome reference GRCh37 (hg19). Sequencing metrics were calculated
using the Picard data-processing pipeline with an output of Binary Alignment Map
(BAM) files. The Genome Analysis Toolkit suite was used to genotype all variant
sites, calculate initial quality control metrics, and filter based on these values to
result in an output of Variant Call Format (VCF) files, which were used for further

quality control and analysis.8> Variants were annotated using SnpEFF.86

Discovery Cohort Quality Control

Samples that failed in any step of the solution hybrid selection component of the
targeted sequencing process were excluded. Population clustering was assessed
through multidimensional scaling using pruned common variants (>5% minor allele
frequency) with high call rates and that were not in linkage disequilibrium. Outliers

on a plot of the first two principal components generated from multidimensional
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scaling were excluded. Samples with high heterozygosity rates (number of
heterozygote sites/number of variants per sample) were excluded as presumptively
contaminated, and those with high singleton counts (> three interquartile range
above the median) were excluded due to presumptive sequencing error. Variants

with low mean depth (<8) and low call rate (<95%) were excluded.

Replication Cohort Selection

To replicate our findings, we selected samples from an additional unrelated 1,245
individuals with historically high and low HDL-C who had participated in other
genetic studies related to lipids. Plasma lipid levels were measured and individuals
with HDL-C levels greater than the 95th percentile (n = 580, mean HDL = 98 mg/dl)
or below the 25t percentile (n = 514, mean HDL-C = 32 mg/dl) were selected for

follow up (Table 2).

Exome Array Genotyping

Exome array is a genotyping chip designed to query rare variation in the
European population. We contributed a small number of variants to the design of
this array by depositing 128 variants from preliminary HDL-C targeted sequencing
analyses with marginally significant (P<0.05) results for variants with a MAF <5%
and low-frequency nonsynonymous variants contributing to significant (P<0.05)
gene burden test results.

Exome array genotyping was performed at the Center for Applied Genomics

at the Children's Hospital of Pennsylvania. Genotyping calls were generated using
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Genome Studio and all samples had a call rate >98%. To improve genotype calling
for rare variants on the exome array, uncalled sites were recalled using zCall, which
has been described in detail elsewhere.8” Briefly, zCall is a rare-variant caller that
models the relationship between intensity profiles of common allele homozygote and
heterozygote clusters at common sites, and then uses these models to assign rare

genotypes marked as missing in an initial Genome Studio analysis.

Replication Cohort Quality Control

All samples had a high call rate (>98%). Six samples had heterozygosity rates three
interquartile ranges above the median and were excluded. Population clustering
was assessed through multidimensional scaling using pruned common variants
(>5% minor allele frequency) that were not in linkage disequilibrium. No samples
were excluded based on this metric. Individuals that were determined to have a
high degree of relatedness through identity-by descent calculation (Pi-Hat > 0.4)

were also removed from the analysis.

Statistical Analysis

Single variant association results were computed using adaptive permutations on a
dichotomous phenotype of high and low levels HDL-C using Fisher’s exact test. For
the exome array genotyping cohort, clustering algorithms based on pruned
genotypes were used to account for ancestry differences and to serve as a sensitivity
analysis. Using a minor allele frequency cutoff of 5%, the C-alpha®8 and variable

threshold®® gene burden tests was used to identify significantly associated genes



20

with a Bonferroni corrected P value based on the total number of genes sequenced
at the same locus. The C-alpha test is a gene burden test that aggregates variants
within a gene to identify if a mixture of non-neutral alleles (risk and/or protective
allele) are present that result in a deviation from variance expected under binomial
model.?9 With the variable threshold test, the allele frequency threshold on which
variants are pooled within a gene is optimized and the pooled variants are assigned
equal weight and directionality in burden to calculate their collective burden.?? All
single variant associations and gene-based associations with a P value < 0.05 were
compared with respective association results in the genotyping replication
population. All analyses were performed using R,°2 GATK,?3 PLINK,%*

PLINK/SEQ.%>
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RESULTS
Discovery Sequencing
Of the 776 individuals of European descent that underwent targeted sequencing,
731 individuals remained after quality control measures. Of this group, 719
individuals had HDL-C values distinctly either above the 95t percentile or below the
25t percentile for their age and sex. The final targeted sequencing association
analysis was performed on 334 individuals with low HDL-C levels (mean HDL-C =
31.6 mg/dL) and 385 individuals with very high HDL-C levels (mean HDL-C = 101.8
mg/dL) (Table 1).

Of the 262,873 targeted bases, 76% were covered at greater than 30-fold
coverage whereas 81% were covered at greater than 20-fold coverage. Across the
719 individuals, we identified 8,714 missense, nonsense, or splice site DNA

sequence variants. Of these, 8,138 had a minor allele frequency <5%.
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Table 1: Characteristics of participants who underwent targeted sequencing

Targeted Sequencing Low HDL-C High HDL-C
Cohort (n=334) (n=385)

HDL-C (mg/dl) 31.6 101.8
LDL-C (mg/dl) 103.1 123.3
TG (mg/dl) 155.2 75.4

Age (years) 63 60
Female (%) 58% 60%
Body mass index (kg/m?) 28.8 23.4
Type Il Diabetes (%) 6.4% 5.2%

Mean phenotypic characteristics of individuals with low HDL-C (<25t percentile) and high HDL-C
(>95th percentile) who underwent targeted sequencing. All individuals who underwent targeted
sequencing were of European ancestry.

Single Variant Association Analysis from Sequence Data

We first tested the association of individual variants with plasma HDL-C. Quantile-
quantile plots of the single variant association results show that most of the variants
fall along the expected null distribution, indicating that the study is well calibrated.
A small fraction of variants (n=122 coding variants) displayed nominal evidence for
association (P<0.05). Of these, 9 were loss-of-function mutations (stop gained,
frameshift, splicesite) and 113 were missense mutations. The variants with the
lowest P values were in genes with well-characterized roles in HDL metabolism

including CETP, ABCA1, and APOA1. The rare, nonsense variant with the strongest
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association evidence was in the PPP1R15A gene (E118X, 0.4% frequency, OR for
high HDL-C of 9.81, P= 0.04). The rare, missense or splice-site variant with the
strongest association evidence was in the CETP gene (A330P, 3.3% frequency, OR

for high HDL-C of 0.23, P=1.0 x 10-5).

Gentoyping-based Replication of Single Variant Results

One proposed method for testing low-frequency and rare DNA variation is to
first sequence to discover variation and then, subsequently, to genotype the
discovered variants in a larger number of individuals to test for association with
phenotype. Towards this end, we had contributed rare variants identified to be
marginally significant in preliminary single variant and gene burden analyses from
targeted sequencing to the design of the exome genotyping array. The final
designed content of the array captures 38% of the variants with MAF < 5% from the
HDL-targeted sequencing. We also evaluated the extent to which the array captured
all of the low-frequency and rare variants discovered from the targeted
sequencing. Of the 8,714 missense, nonsense, and splice-site variants discovered
from the targeted sequencing of 719 individuals, 43% were present on the final
designed content of the exome genotyping array.

Of the 1,250 individuals who underwent exome array genotyping, 1,228
remained after sample quality control measures. Of this group, 1,094 individuals
had HDL-C values at above the 95t percentile or below the 25t percentile adjusted
for age and sex. The final exome array genotyping association analysis was

performed on 580 individuals with low HDL-C levels (mean HDL-C = 32.0 mg/dL)
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and 514 individuals with very high HDL-C level (mean HDL-C = 97.9 mg/dL) (Table
2).

In the single variant analysis of the exome array genotyping data, we found
3,638 coding variants to be marginally significant (P<0.05). Of these, 167 were loss
of function mutations and 3,472 were missense mutations. Of the significant coding
variants, 116 were in the vicinity of the 47 HDL-C loci. Quantile-quantile plots were
well calibrated.

Of the 122 coding variants associated with HDL-C at nominal significance in
the targeted sequencing single variant analysis, 31 were available for replication on
the exome array data. Of these, 14 variants in the genes ZNF259, APOA5, CCDC92,
CETP, FBN3, SNX21, APOB, TBLZ2, and LPL also showed a P<0.05 in the exome array
association analysis.

Across discovery and replication, 3 variants associated with HDL-C after
accounting for the 31 variants tested (threshold P<1.6 x 10-3): the A390P variant in
CETP (4% frequency, OR for high HDL-C of 0.33, P=2.0 x 10-6, CETP locus), the S19W
variant in APOA5 (7% frequency, OR for high HDL-C of 1.78, P=8.1 x 10-4, APOA1
locus), and the S474X variant in LPL (9% frequency, OR for high HDL-C of 1.66,

P=1.5x 103, LPL locus). All 3 variants have been previously studied.’®-98 (Table 3)
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Table 2: Characteristics of Participants Who Underwent Exome Array

Genotyping
Exome Array Low HDL-C High HDL-C
Genotyping Cohort (n=580) (n=514)
HDL-C (mg/dl) 31.7 98.1
LDL-C (mg/dl) 103.4 121.3
TG (mg/dl) 343.6 78.6
Age (years) 49 57
Female (%) 58% 65%
Body mass index (kg/m?) 32.6 23.5
Type Il Diabetes (%) 26.1% 3.9%

Mean phenotypic characteristics of individuals with low HDL-C (<25t percentile) and high HDL-C

(>95th percentile) who underwent exome array genotyping.
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Table 3: Top Single Variant Association Results Including Discovery and

Replication
P Value P Value
Gene Position Protein MAF OR Locus
Targeted Exome Array
CETP 16:57015091 ALA390PRO 0.04 0.33 6.8x10-5 2.0x10-6* CETP
APOAS 11:116662407 SER19TRP 0.07 1.78 4.6x102 8.1x10% APOA1
LPL 8:19819724 SER474stop 0.09 1.66 3.0x103 1.5x10-3" LPL
ZNF259 11:116655600 ALA264VAL 0.06 0.58 3.6x10-2 29x103 APOA1
CETP 16:57016092 VAL422ILE 0.36 0.76 3.3x10+4 5.0x 103 CETP
APOB 2:21231524 PRO2739LEU | 0.22 1.31 2.6x10-2 9.0x103 APOB
CCDC92 12:124427306 SER70CYS 0.33 0.79 8.0x103 1.2x102 ZNF664
SNX21 20:44469698 ALA290THR | 0.003 | 5.66 3.8x102 1.4x 102 PLTP
TBL2 7:72985148 VAL345ILE 0.05 0.61 2.7x102 1.8x102 MLXIPL
FBN3 19:8176945 SER1293GLY | 0.18 1.33 3.8x102 2.1x10-2 ANGPTL4

Association results from exome array replication for variants were found to have P value < 0.05 in
targeted sequencing single variant analysis and exome array genotyping single variant analysis;

*indicates association significant after Bonferroni correction for number of variants tested;

REF=Reference allele, ALT=Alternate allele, MAF=minor allele frequency, OR=0dds ratio, Locus=gene
name assigned to HDL-C GWA SNP70
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Gene-level Association Analysis Using Sequence and Genotype Data

As the majority of the queried variants are rare, we collapsed the missense,
nonsense, and splice site mutations in each gene and performed gene burden
testing. The analysis of the targeted sequencing data using the variable threshold
test found 12 genes at nominal significance (P<0.05) and one gene, SPDEF (P=8.0 x
10-4), to achieve significance after Bonferroni correction for number of genes tested
within respective HDL-C GWAS locus. Performing the variable threshold test in the
exome array genotyping data found 19 genes to be marginally significant (P<0.05)
and three genes to achieve significance after Bonferroni correction for the number
of genes tested within their respective HDL-C loci (LILRBZ (P=8.6 x 10-°), LIPG
(P=3.0x10-3), and SCARB1 (P=1.0 x 10-3)). Marginally significant associations in
CETP (15 pooled variants, P = 1.1 x 10-2), LIPG (14 pooled variants, P=3.0 x 10-3), and
NCOR?Z2 (52 pooled variants, P=3.4 x 10-2) identified using the variable threshold test
in the targeted sequencing data were replicated in the exome array genotyping
cohorts (Table 4).

To accommodate genes where variants could have both gain-of-function and
loss-of-function variants affects HDL-C, we performed the c-alpha test using
nonsense, missense, and splice site variants with a minor allele frequency lower
than 5%. The analysis of the targeted sequence data using the c-alpha test showed
that 11 genes were marginally significant (P<0.05), and 2 genes reached significance
after Bonferroni correction for the number of genes tested within their respective
HDL-C loci: ABCA1 (1.4 x10-4) and CETP (P=1.3 x 10-°). Performing the c-alpha test

on the exome array genotyping data using the same inclusion criteria showed that
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19 genes were marginally significant and five genes reached significance after
Bonferroni correction for the number of genes tested within their respective HDL-C
loci: CD40 (P=3.4 x 10-4), CETP (P=2.0 x 10-%), LILRB2 (P=2.1 x 10-%), PLG (P=8.9 x 10-
5), and TCAP (P=1.0 x 10-3). The marginally significant association identified in CETP
(P=2.0 x 10-%) using the c-alpha test in targeted sequencing was replicated in the

exome array genotyping analysis (Table 4).
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Table 4: Top gene-level association results after discovery and replication

P value P value
from from
targeted exome
Position Gene Test sequencing array

1.3x 103/ 2.0x10°

chr16:56995908..57017292 CETP | CALPHA/VT
2.0x 102 /1.1x107?

chr18:47088754..47109955 LIPG VT 1.6x 1072 3.0x103

chr12:124810093..124979749 | NCORZ2 VT 1.9x107 3.4x107?

Association results from exome array replication for pooling of variants led to gene-based
associations with P <0.05 in targeted sequencing burden analysis and exome array genotyping

burden analysis using C-alpha and variable threshold tests (VT).
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DISCUSSION

We identified 47 GWAS loci for HDL-C, targeted all exons at 407 genes within
these genomic regions, sequenced individuals with extremely high or low HDL-C,
and attempted replication in an independent sample through array-based
genotyping. After performing single variant and gene-burden analyses across
discovery and replication cohorts, we did not identify any new rare coding sequence
variants or genes with a large effect on plasma HDL-C levels.

This study was successful in replicating known genes with previously defined
associations with plasma lipid levels. The functions of CETP, APOA5, LPL, APOB, and
LIPG in HDL-C metabolism have been well established.?3.27-100 Although the
functional role of the CCD92 and ZNF259 genes remain unclear, these loci have
previously been associated with plasma lipoprotein size, concentration, and
cholesterol content.”3

The study permits several conclusions. First, since we were unable pinpoint
specific coding variants responsible for the genome-wide association signals for
HDL-C, we can speculate that the GWAS association signals may be truly due to non-
coding, regulatory variants. Of the 47 total HDL GWAS loci that were fine mapped,
36 loci (77%) remain without any marginally significant single coding variant or
gene-based association. Only the S70C variant in CCDC92 and the P2739L variant in
APOB were found to have identical minor allele frequencies and similar effect size
estimates as the non-coding variants in their respective GWAS loci (4POB locus:
rs1042034, frequency = 22%, effect = +4.16 mg/dL, P = 4.08 x 10”°° with APOB variant

P2739L, frequency = 22%, OR =1.31,P=2.6 x 102 and ZNF664 locus: 154765127,
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frequency = 34%, effect = +0.44 mg/dL, P =2.89 x 10™° with CCDC92 variant S70C,
frequency = 36%, OR = 0.79, P = 8.0 x 107).70 This suggests that for these two loci,
the identified coding variants may be responsible for the initial common noncoding
variant GWAS association. For the remaining loci, intronic or intergenic SNPs in
vicinity of the HDL-C GWAS loci may be involved in regulation and expression of
coding genes involved in lipid metabolism.101

Secondly, targeted sequencing may have limited utility in discovering
functional causes of GWAS signals. The absence of rare coding variants of large
effect in GWAS loci is consistent with reports from other groups who have
performed targeted sequencing-based variant discovery and genotyping-based
replication studies to investigate variants in GWAS loci for autoimmune diseases
with larger sample sizes.102 Although targeted sequencing has previously been used
to identify a few genes implicated in various diseases, hundreds of GWAS loci have
collectively been fine mapped in the course of these studies, and the functional
significance of the association signal at the vast majority of these loci remains
unresolved.”6-7883 Therefore revisiting and systematically studying the initially
discovered non-coding variants in the implicated loci will be necessary to better
understand the biologic underpinnings of these associations.

Several limitations of the present study need to be considered. The collective
sample size of 719 individuals may be too small to provide sufficient power to
detect associations of rare alleles with more modest effect. The targeted sequencing
analysis has 80% power to identify 0.7% frequency variants with odds ratio greater

than 3.25, 1% frequency variants with odds ratio greater than 2.56, and 5%
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frequency variants with an odds ratio of greater than 1.47 in the study
population.193 However, the total number of individuals in the study is similar to
the sample sizes studied for the analysis of different traits by other groups who
were able to implicate coding mutations to GWAS SNPS using fine mapping and
replication.”6-7883

Furthermore, the replication study was performed using exome array
genotyping rather than additional sequencing. As a result, we were unable to fully
test the following: 1) rare variants discovered in the targeted sequencing but not
present on the exome array: and 2) a model where a burden of multiple rare alleles
exclusively contributes to association signal.

Although this study successfully identified common variants and genes
previously implicated in HDL-C metabolism, we did not identify any new rare coding
variants or genes with sufficiently significant, replicating associations in the 47 loci
with genome-wide associations with HDL-C. Fine mapping of coding regions
surrounding GWAS loci may have limited utility in the investigation of the cause of
these association signals. Though the study may have been limited by power and its
genotying-based replication, it suggests that noncoding variation may be playing a
significant role in determining plasma HDL-C levels. These results provide insight
regarding the design of similar sequencing studies for cardiovascular traits with

respect to sample size, follow-up, and analysis methodology.
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Part II: Plasma Lipids Association Study Including ~130,000 Individuals
Genotyped Using the Exome Array

BACKGROUND

Plasma low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein
cholesterol (HDL-C), and triglycerides (TG) are quantitative, heritable risk factors
for coronary heart disease.? Linkage and sequencing studies have identified a
number of very rare variants in genes implicated in Mendelian dyslipidemias.61-63.66
Genome-wide association (GWA) studies have identified many common single
nucleotide polymorphisms (SNPs) associated with plasma lipid levels.16.66,67,69,70,72-74
However, the impact of rare and low frequency variation on plasma lipid levels in
the population remains largely unstudied due to logistical limitations of current
methodology. Querying this range of variation may help provide potential novel
targets for therapeutics for preventing and treating coronary heart disease.

Alarge cohort of samples is necessary to sufficiently power a study to detect
rare associations, and exome sequencing on this scale is currently prohibitively
expensive. Other groups have designed custom arrays for fine mapping and
candidate gene genotyping of large cohorts of individuals with cardiovascular,
metabolic, and immunologic diseases.104-106 A consortium of groups studying a
broad range of diseases has taken a similar approach with a broader stroke of
attempting to capture all replicable rare and low frequency variants from the entire
exome on an array based on the variation seen in exome sequencing of over 12,000
individuals. As this array makes the analysis of variants in tens of thousands of
individuals considerably faster and less expensive, it lends itself to interrogating

rare and low frequency variants in complex traits via large collaborative efforts.
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HYPOTHESIS AND SPECIFIC AIMS

We hypothesized that using a novel genotyping array focusing on low-
frequency and rare variants, we can discover new genes and variants associated

with plasma lipid levels. Our specific aims were as follows:

1). Contributed to the to the design of the exome array.

2). Obtained plasma lipid level data and performed genotyping and data

processing in all participating cohorts.

3). Analyzed data from each cohort using a common analysis plan.

4). Combined test statistics from participating studies and meta-analyzed

results in single variant and gene based testing.



35

METHODS

Cohort Selection

The more than 130,000 samples that were genotyped and analyzed came
from 58 cohorts of individuals from around the world. These cohorts consist of
cases and controls for early onset myocardial infarction and type 2 diabetes
mellitus, as well as members of the general population. The majority of these
individuals report having European ancestry while a significant portion report

South Asian and African ancestries.

Phenotype Modeling

Plasma lipid trait data was collected and modeled uniformly across all
cohorts. Blood was collected, plasma lipid levels were measured, and DNA was
extracted from each study participant’s blood sample. Only individuals who had
blood drawn while fasting were included in the analysis of LDL-C and TG. All
individuals were included in the analysis of HDL-C, regardless of fasting status at the
time of blood draw. Calculations involving LDL-C, HDL-C values were performed
using units of mg/dl, and calculations involving TG were performed using the
natural log transform of the TG level in mg/dl. The mean levels for each trait across
the cohorts were representative of the general population (LDL-C: 161 mg/dl, HDL-
C: 53 mg/dl, TG: 107 mg/dl, and TC: 239 mg/dl). For data collected after 1994, the
plasma TC measurements of subjects that were known to be on lipid medication
were adjusted (adjusted TC = TC / 0.8) with the assumption that they were

prescribed statins following the publication of the 4S trial.*° For data that was
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collected prior to 1994, no adjustments were made to account for lipid medication.
LDL-C was calculated using the Friedewald formula for individuals with a
triglyceride level < 400 mg/dl (LDL = TC - HDL - (TG/5)).3¢ For individuals whose
TC levels were modified due to lipid medication status, the modified TC was used in
the formula. Regardless of medication status, no adjustments were made for HDL-C
or TG.

For each lipid trait, residuals were calculated after adjusting for age, age?,
sex, and at least 4 principal components computed through multiple dimensional
scaling. The inverse normal transformation of the trait residuals served as the

phenotypes in the analysis.

Exome Array Design

Exome array is a genotyping chip designed to query rare variation down to
1:10,000 in the European population. The array includes coding variants seen in
multiple existing sequence datasets of ~12,000 sequenced genomes and exomes of
individuals of mainly European ancestry. It also contains all of the variants
implicated in GWAS found in the NHGRI catalog and a small amount of insertion-
deletions, micro RNA target sites, mitochondrial variants, and ancestry markers. A
more detailed description of exome array SNP content and selection is available on

the design website.107
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Exome Array Genotyping

Exome array genotyping was performed at academic institutes around the
world using [llumina HumanExome BeadChip arrays. All genotypes were called
using zCall, a variant caller specifically designed for calling rare SNPs from the
exome array.8” This caller was implemented as a post-processing step after a
default autocalling algorithm was applied. Linear regression was used to determine
the relationship between the intensity profile of the common allele homozygote
clusters for common sites, and an optimal z value was obtained, which was then

used to recall the genoypes at each site.

Genotyping Quality Control

After genotyping, each cohort of samples underwent uniform and stringent
quality control measures. Samples with an autocall rate <98% or a Z-call rate <99%
were removed. Samples with a high heterozygosity rate (a measure of
contamination) three interquartile ranges above the median were excluded.
Samples exhibiting gender discordance were removed. Population clustering was
assessed through multidimensional scaling using pruned common variants (>5%
minor allele frequency) that were not in linkage disequilibrium, and outliers based
on these metrics were excluded. Individuals that were determined to have a high
degree of relatedness through identity-by descent calculation (Pi-Hat > 0.4) were

also removed from the analysis.



38

Association Analysis

Each cohort was analyzed independently. For study groups ascertained on
case or control status for early onset myocardial infarction or type 2 diabetes, the
two sub-groups were modeled as separate studies. Each self-reported racial
subgroup was also modeled as a separate study.

Single variant association was performed using a linear regression-based
analysis of missense, nonsense, and splice variants with minor allele frequency >1%.
The statistical software programs rvtests and RareMetalWorker were used to run
the rare variant analyses and to generate summary statistics. The rvtests program
was used for cohorts with all unrelated individuals. RareMetalWorker was used to
analyze cohorts that included related individuals and generated an empirical
kinship matrix based on the cohort’s genotype data to account for hidden
relatedness or substructures during the analysis. Additional computation was
performed using R%2 and PLINK.?4 The summary level statistics generated by both
programs included: allele frequency for each variant, single variant association
score test statistics with direction of effect, covariance matrix for each genetic
region, and metrics for assessing genotype qualities, including Hardy Weinberg
equilibrium and call rate. The output files were uniformly prepared by each study
and then aggregated and meta-analyzed at one site.

Gene-based association involving burden analysis of pooled rare variants
within a gene was used to assess if rare mutations in aggregate associate with the
lipid traits. Using summary statistics for each variant, genes were annotated based

on entries in the refFlat/refGene database. Only non-synonymous variants, stop
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gain mutations, stop loss mutations, and splice site mutations with minor allele
frequencies less than 5% were used in separate burden analyses. The variable
threshold test assigns equal weight and directionality of effect to each variant,°!
while the SKAT (Sequence Kernel Association Tests) test better assesses the effects
of causal variants with opposite effects present in a gene region.198 Both analyses

were performed for each cohort, and the results were meta-analyzed.

Meta-analysis

In order to power the study well, very large sample sizes from a
collaboration of groups were needed. We gathered summary statistics generated
using a common analysis plan from each of the 58 participating studies and
combined single variant test statistics using the Mantel-Haenszel method.19? We
then subsequently meta-analyzed gene-level association tests for a total of >130,000

individuals using RAREMETAL.110

Conditional Analysis

As all variants on the exome array were included in the analysis without
exclusions based on SNPs being in linkage disequilibrium, conditional analysis was
necessary to identify the true, independent association signals. Using the covariance
matrices generated during the analysis step for each cohort, each variant was
conditioned on the SNP with the lowest P value within a 1 megabase window. No
conditional analysis was performed for the SNPs with the strongest associations in a

1 megabase window block.
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RESULTS
Single Variant Analysis From Exome Array Genotyping

After stringent quality control measures, over 130,000 samples were
included in the final analysis of each lipid trait. The mean plasma lipid levels and
phenotypic distributions for the combined cohorts were representative of the
general population. All participating studies reported excellent genotyping data
quality, and minimal samples were excluded during the quality control phase.
Quantile-quantile plots for each lipid trait were well calibrated.

In the single variant analysis of the population exome array genotyping data,
we identified over 230,000 polymorphic variants each for LDL, HDL, and TG. This
includes 194,470 missense variants, 9,600 splicesite variants, 4,546 nonsense
variants, 76 frame shift variants, and 30,894 non-coding variants. Of these, 27,827
or 12.1% were common mutations (>5:100 in the population), 48,437 or 21.1%
were low frequency mutations (1:1000-5:100 in the population), and 153,719 or
66.8% were rare mutations (<1:1000 in the population). The Bonferroni cutoff for
statistical significance was determined to be P < 2 x 10-7 for single variants, given
the ~250,000 variants on the exome array available for analysis. After performing
conditional analysis, we identified 79 variants associated with LDL, 133 variant
associated with HDL, and 97 variants associated with TG that met Bonferroni cutoff
of exome array wide significance. The majority of these findings represented GWAS
variants that had been reported in the NHGRI catalog and placed on the array. We

identified low frequency and rare variants for each trait (10 SNPs for LDL, 29 SNPs
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for HDL, 15 SNPs for TG) that remained statistically significant after conditional
analysis.

The strongest associations for each trait replicated well-established
associations, which serve as positive controls (Table 5). For LDL-C, variants in
APOE (R176C, frequency = 7:100, effect=-22.1 mg/dl, P <9 x 10-288) and PCSK9
(R46L, frequency = 2:100, effect=-17.6 mg/dl, P = 1 x 10-1°9) were the top coding
mutation signals. For HDL-C, the top hits were in CETP (A390P, frequency = 4:100,
effect =-4.0 mg/dl, P =1 x 10-178) and LPL (S474X, frequency = 1:10, effect = +2.5
mg/dl, P = 4 x 10-143), For TG, the top hits were in APOA5 (S19W, frequency = 6:100,
effect = +14.9 mg/dl, P =8 x 10-184) and LPL (S474X, 1:10, effect = 11.6 mg/dl,P=1x
10-170). The roles of all of these genes have been well characterized in lipid
metabolism.6297.98111112° A]] of these variants occur at low to common frequencies

resulting in strong statistical signals.

Additionally, we identified 11 new genes and variants associated with plasma
lipid levels (Table 6). For LDL-C, we identified a variant in ABCA6 (C1359R,
frequency = 1:100, effect=+8.2 mg/dl, P=9.7 x 10-32), a member of the ATP-binding
cassette family, associated with increased LDL-C levels. We also identified a variant
in SERPINA (E366K, frequency = 2:100, effect = +3.1 mg/dl, P=2.3 x 10-7), which is a
serine protease inhibitor, and a variant in REST (R645W, frequency = 6:10000,
effect = +13.7 mg/dl, P=5.0 x 10-7), which is a RE1-silencing transcription factor,
associated with increased LDL-C levels. Furthermore we identified a variant in

FBLN1 (H695R, frequency = 2:100, effect = -2.7 mg/dl, P=5.3 x 10-7), which is tumor
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suppressor gene, and a variant in CCDC117 (T232], frequency = 9:1000, effect = -4.3
mg/dl, P=7.3 x 10-7), which is a coiled coil domain, associated with decreased LDL-C.

For HDL, we identified a variant in TMED6 (F6L, frequency = 4:100, effect = -
0.8 mg/dl, P=4.4 x 10-9), which is involved in transmembrane transport, and a
variant in CDC25A (Q24H, frequency = 3:100, effect = -1.0 mg/dl, P=8.4 x 10-8),
which is a phosphatase involved in cell cycle regulation, associated with decreased
HDL-C levels. Furthermore, we identified a variant in MAP14, a microtubule-
associated protein, (P2349L, frequency = 3:100) associated with decreased HDL-C
levels (effect = -1.4mg/dl, P=3.9 x 10-14) and increased triglyceride levels (effect =
+8.4mg/dl, P=3.2 x 10-26),

For TG we identified a variant in PRRC2A (S1219Y, frequency = 2:100, effect
=+6.6 mg/dl, P=4.6 x 10-17), which is a proline rich coiled-coil , and a variant in
COL18A1 (V125], frequency = 1:1000, effect = +18.0 mg/dl, P=1.3 x 10-7), which
encodes a type of collagen, associated with increased triglyceride levels. We also
identified a variant in EDEM3 (P746S, frequency = 1:100, effect = -5.4 mg/dl, P=2.4 x
10-7), which is an ER degredation enhancer, associated with decreased triglyceride

levels.
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Table 5: Top Exome Array Single Variant Associations

Chromsome: Coding Allele Effect
Trait Gene P Value
Position Change Frequency | (mg/dl)
LDL chr19:45412079 APOE ARG176CYS <9.1x10-288 7:100 -22.1
LDL chr1:55505647 PCSK9 ARG46LEU 1.0 x 10-190 2:100 -17.6
HDL chr16:57015091 CETP ALA390PRO 1.4 x 10178 4:100 -4.0
HDL chr8:19819724 LPL SER474stop 3.8x 10143 1:10 +2.5
TG chr11:116662407 | APOA5 SER19TRP 7.7 x 10-184 6:100 +14.9
TG chr8:19819724 LPL SER474stop 1.1x 10-170 1:10 -11.6
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Table 6: Novel Exome Array Single Variant Associations

Chromosome: Allele Effect
Trait Gene Coding Change P Value
Position Frequency (mg/dl)
LDL chr17:67081278 ABCA6 CYS1359ARG 9.7 x10-32 1:100 +8.2
LDL chr14:94844947 SERPINA1 GLU366LYS 2.3 x107 2:100 +3.1
LDL chr4:57796957 REST ARG645TRP 5.0 x107 6:10000 +13.7
LDL chr22:45996298 FBLN1 HIS695ARG 5.3 x107 2:100 -2.7
LDL chr22:29182169 CCDC117 THR232ILE 7.3 x107 9:1000 -4.3
HDL chr11:116701354 APOC3 IVS2+1 G>A 3.5x1042 1:1000 +10.6
HDL chr11:116701353 APOC3 ARG19stop 9.9x10-12 3:10000 +11.0
HDL chr15:43820717 MAP1A PRO2349LEU 39x10-14 3:100 -1.4
HDL chr16:69385641 TMED6 PHE6LEU 4.4 x10° 4:100 -0.8
HDL chr3:48229366 CDC25A GLN24HIS 8.4 x108 3:100 -1.0
TG chr11:116701353 APOC3 ARG19stop 5.8x10-23 3:10000 -65.9
TG chr11:116701354 APOC3 IVS2+1 G>A 2.0x 1081 1:1000 -65.2
TG chr15:43820717 MAP1A PRO2349LEU 3.2x1026 3:100 +8.4
TG chr6:31600106 PRRC2A SER1219TYR 4.6x1017 2:100 +6.6
TG chr21:46875817 COL18A1 VAL125ILE 1.3 x107 1:1000 +18.0
TG chr1:184672098 EDEM3 PRO746SER 2.4x107 1:100 -5.4




45

In addition to these novel associations with genes, we also discovered a new
splice site variant in the gene APOC3 (IVS2+1 G>A, frequency = 1:1000) that is
significantly associated with increased HDL-C levels (effect=+10.6mg/dl, P=3.5 x 10-
42) and decreased TG levels (effect=-65.2mg/dl, P=2.0 x 10-81). Furthermore, we
report population level data for an established variant in APOC3 (R19X, frequency =
3:10,000) that introduces a premature stop codon and truncates the protein leading
to a loss of function. This variant has been reported to occur at a 5% frequency in
the Lancaster Amish population and has been associated with lower serum TG,
higher levels of HDL-C, lower levels of LDL-C, and lower levels of subclinical
atherosclerosis as measured by coronary artery calcification.113 In our population
level data we found that the APOC3 R19X variant is much rarer in the general
population and that it is associated with increased HDL-C levels (effect=+11mg/dI,
P=9.9 x 10-12) and decreased triglyceride levels (effect=-65.9mg/dl, P=5.8 x 10-23)
(Figure 6). The majority of the novel associations occur with variants with low to

very rare frequencies.

Figure 6: Triglyceride Levels in R19X and Adjacent Splice Mutation Carriers
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Carriers of the adjacent R19X or IVS2+1G>A mutations in APOC3 have dramatically decreased
triglycerides.
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Gene-level Association Analysis Using Exome Array Genotype Data

As the majority of the variants available for analysis on the exome array are
rare, we pooled the missense, nonsense, and splice site mutations in each gene and
performed gene burden testing. The analysis of exome array genotyping data using
the variable threshold test identified 10 genes associated with LDL-C, 23 genes
associated with HDL-C, and 13 genes associated with TG. The top associations were
between LDL-C and PCSK9 (P = 4.8 x 10-#¢), HDL-C and CETP (2.8 x 10-73), and TG
and APOC3 (P = 5.3 x 10-82) (Table 7). The roles of all of these genes with the
strongest associations have been well characterized in lipid metabolism.6297.114

To account for opposite effects of variants within a gene region in calculating
the burden results, we performed the SKAT test using nonsense, missense, and
splice site variants with a minor allele frequency lower than 5%. The analysis of
exome array genotyping data using the SKAT burden test identified 8 genes
associated with LDL-C, 18 genes associated with HDL-C, and 7 genes associated with
TG after accounting for the number of genes tested. The top associations were
between LDL-C and PCSK9 (P = 2.4 x 10-°4), HDL-C and ANGPTL4 (6.7 x 10-6%), and
TG and ANGPTL4 (P = 2.1 x 10-73) (Table 8). The roles of all of these genes with the

strongest associations have also been well characterized in lipid metabolism.62.115



Table 7: Top Variable Threshold Gene Burden Associations
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Trait Gene P Value | EffectSize | Variants
LDL PCSK9 8.6 x 10-59 -0.2 26
LDL LDLR 3.1x 1012 0.7 28
HDL CETP 2.8x 1073 -0.2 15
HDL LPL 1.2x 1070 -0.2 12

TG APOC3 5.3 x 1082 -1.0 4
TG | ANGPTL4 | 2.2x10%7 -0.2 11

Effect size reported in standard deviation units. Variants denote number of single
variants in gene contributing to burden result.

Table 8: Top SKAT Gene Burden Associations

Trait Gene P Value | EffectSize | Variants
LDL PCSK9 2.4x 1094 -0.2 26
LDL APOE 3.5x108 0.1 4
HDL | ANGPTL4 | 6.7 x 10-66 0.2 11
HDL LPL 5.3x 1047 -0.2 12

TG | ANGPTL4 | 2.1x1073 -0.2 11
TG APOC3 8.1x 1068 -1.0 4

Effect size reported in standard deviation units.
variants in gene contributing to burden result.

Variants denote number of single
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DISCUSSION

We used an exome array to genotype over 130,000 individuals at almost
250,000 sites to assess the role of low-frequency and rare variants at the population
level. After meta-analyzing the results from all 58 participating studies, we
discovered several new genes and variants significantly associated with plasma lipid
levels in humans. We report for the first time variants in the genes ABCA6,
SERPINA1, REST FBLN1, and CCDC117 associated with LDL-C levels, variants in
TMEDG6 and CDC25A associated with HDL-C levels, variants in PRRC2A, COL18A1,
and EDEM3 associated with TG and variants in MAP1A and APOC3 associated with
HDL-C and TG. None of these genes have previously been associated with plasma
lipid levels, and their role in lipid metabolism remains largely unknown.

These results permit several conclusions. First, this study was successful in
replicating findings of coding mutations in genes with well-established associations
with plasma lipids. The associations of APOE and PCSK9 with LDL-C, CETP and LPL
with HDL-C, and APOA5 and GCKR with TG have been well established and their
functions well characterized.®2°7-99 The study also successfully replicated plasma
lipid associations with GWAS variants that were included on the exome array. This
establishes the validity of the genotyping as well as the analytic methods employed.
Furthermore, conditional analysis based on nearby loci with strong associations was
successful in filtering out numerous false single variant signals that arose based on
proximity and linkage to associated loci.

Second, we discovered only a few new rare coding variants using this

approach. The collective sample size of over 130,000 individuals provides sufficient
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power to detect weak associations of low frequency and rare alleles with small
effect. In the meta-analysis, we had over 80% statistical power to identify variants
with an effect size of 0.2 standard deviations down to 0.35% frequency and variants
with an effect size of 0.4 standard deviations down to a 0.085% frequency at an
alpha level of 2 x 10-7. Therefore we can reasonably conclude that within the
context of the exome array, low-frequency and rare coding variants of large effect in
the frequency range of (0.085-5%) do not contribute significantly to the overall
variation in plasma lipids at the population level, and larger sample sizes will be
needed in order to detect variants with smaller effects. Given that the frequency of
recessive alleles responsible for Mendelian dyslipidemias are commonly much
lower than the detection threshold of the exome array, it is not surprising that so
few very rare variants were discovered in this analysis.

Third, rare and low frequency variants collectively explain only a small
fraction of the missing heritability in plasma lipid levels. Despite the relatively large
effect sizes on the lipid traits by some of the mutations, the paucity and overall low
frequency of the variants with novel associations collectively only explain 0.002% of
the variance in LDL-C, 0.003% of the variance in HDL-C, 0.006% of the variance in
TG. However, in our single variant analysis we used only the additive model for
simplicity. Factoring interactions and other modes of inheritance may explain a
collectively larger fraction of the missing heritability.

Several limitations of the present study need to be considered. We were not
able to evaluate extremely rare variants that may be unique to individuals; exome or

whole genome sequencing is needed to capture this type of variation. As such, it
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remains possible that a burden of such very rare mutations could contribute to
plasma lipid variation. If so, the sample sizes required to yield new rare variant
discoveries are likely to be extraordinarily large.

The Exome Array is constrained to the coding and splice site variation
observed in the ~12,000 individuals who comprised the initial exome sequencing
discovery set. Furthermore, ~20% of the content contributed for design failed to be
converted into genotyping assays and thus, these variants are not present on the
Exome Array.

Additionally, the majority of the individuals who were genotyped are of
European ancestry. The uniformity in allele frequencies and haplotype blocks
associated with predominantly single ancestry analysis limits the power to detect
true associations limited to non-European groups. However, our group also
conducted a similar exome array association study with lipids and myocardial
infarction (MI) in 56,000 individuals of African and European ancestry and
identified only 4 additional low frequency variants associated with HDL-C and TG
but not with LDL-C or MI risk.116

Using the exome array to genotype a large cohort of individuals, we were
able to discover several rare variants in genes associated with plasma lipid levels.
Looking forward, it will be important to further investigate if these variants are
associated with coronary heart disease. Very little is known about the function of
the newly discovered genes, and understanding their role in lipid metabolism may

provide new insights into treating patients with dyslipidemias.
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CONCLUSIONS AND FUTURE DIRECTIONS

After performing targeted sequencing of genes surrounding GWAS loci in
participants with extremely high or low HDL-C levels, we did not discover any new
rare coding variants with a strong effect on HDL-C. These results suggest that rare
coding variants may not be significantly contributing to the original GWAS signals
and that targeted exome sequencing has limited utility in discovering functional
variants at these loci. Adding more samples to the study will better power the
analysis, but this is unlikely to translate into new gene discoveries.

As the targeted sequencing data are unable to link a specific rare coding
mutation to nearby GWAS loci in most cases, it will be important to redirect
attention to the actual GWAS SNPs that were initially discovered. Investigating the
role of possible functional or regulatory elements at these sites in disease-specific
cell lines as an extension of available ENCODE data may be fruitful in identifying
mechanistic schema and guiding future experiments.101 Although targeted
sequencing has had some success in suggesting coding variants that are likely
contributing to the GWA signal for some traits, revisiting and systematically
studying the initially discovered non-coding variants in the implicated loci will be
necessary to better understand the biologic underpinnings of these associations.

Using the exome array to genotype rare variants in over 130,000 individuals,
we have discovered 11 new genes associated with plasma lipids. We report novel
associations of variants in the genes ABCA6, SERPINA1, REST, FBLN1, and CCDC117
with LDL-C levels, variants in TMED6 and CDC25A with HDL-C levels, variants in

PRRCZ2A, COL18A1, and EDEM3 with TG and variants in MAP1A and APOC3 with HDL-
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Cand TG. We also reported 2 variants in APOC3 with new, strong associations with
HDL-C and TG. These results suggest that rare and low frequency variants explain a
small portion of plasma lipid level variance at the population level. The
generalizability of these conclusions with regards to genetic architecture is limited
by the content of the exome array and the exomes from which the array SNPs were
gathered; however, given the large scale of the undertaking, these results suggest
that only a handful of other rare variants may be found even if the analysis were to
be significantly extended in sample size or if such methodology was applied to other
complex traits.

We will next assess the role of these variants with CHD. Our group is also
leading an exome array meta-analysis consortium investigating the role of rare and
low frequency variants in causing early onset myocardial infarction (MI). We will
intersect the findings from the lipids meta-analysis with the exome array analysis
for MI to inquire if the newly discovered genes contribute directly to coronary
artery disease. Finally, very little is known about the genes and variants with novel
associations discovered using the exome array, so we will carry out functional
studies for each protein. Cell-based assays testing for the LDL trait are in progress
for the top variant associations with plasma LDL-C levels. Determination of the
function these discoveries in lipid metabolism may provide new insights into

treating patients with dyslipidemias and coronary heart disease.
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