35 research outputs found

    Multisystem imaging manifestations of covid-19, part 1: Viral pathogenesis and pulmonary and vascular system complications

    Get PDF
    © RSNA, 2020. Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) results in coronavirus disease 2019 (COVID-19), which was declared an official pandemic by the World Health Organization on March 11, 2020. The infection has been reported in most countries around the world. As of August 2020, there have been over 21 million cases of COVID-19 reported worldwide, with over 800 000 COVID-19–associated deaths. It has become appar-ent that although COVID-19 predominantly affects the respiratory system, many other organ systems can also be involved. Imaging plays an essential role in the diagnosis of all manifestations of the disease, as well as its related complications, and proper utilization and interpretation of imaging examinations is crucial. With the growing global COVID-19 outbreak, a comprehensive understanding of the diagnostic imaging hallmarks, imaging features, multi-systemic involvement, and evolution of imaging findings is essential for effective patient management and treatment. To date, only a few articles have been published that comprehensively describe the multisystemic imaging manifestations of COVID-19. The authors provide an inclusive system-by-system image-based review of this life-threatening and rapidly spreading infection. In part 1 of this article, the authors discuss general aspects of the disease, with an emphasis on virology, the pathophysiology of the virus, and clinical presentation of the disease. The key imaging features of the varied pathologic manifestations of this infection that involve the pulmonary and peripheral and central vascular systems are also described. Part 2 will focus on key imaging features of COVID-19 that involve the cardiac, neurologic, abdominal, dermatologic and ocular, and musculoskeletal systems, as well as pediatric and pregnancy-related manifestations of the virus. Vascular complications pertinent to each system will be also be discussed in part 2

    Erratum to: 36th International Symposium on Intensive Care and Emergency Medicine

    Get PDF
    [This corrects the article DOI: 10.1186/s13054-016-1208-6.]

    More than smell - COVID-19 is associated with severe impairment of smell, taste, and chemesthesis

    Get PDF
    Recent anecdotal and scientific reports have provided evidence of a link between COVID-19 and chemosensory impairments, such as anosmia. However, these reports have downplayed or failed to distinguish potential effects on taste, ignored chemesthesis, and generally lacked quantitative measurements. Here, we report the development, implementation, and initial results of a multilingual, international questionnaire to assess self-reported quantity and quality of perception in 3 distinct chemosensory modalities (smell, taste, and chemesthesis) before and during COVID-19. In the first 11 days after questionnaire launch, 4039 participants (2913 women, 1118 men, and 8 others, aged 19-79) reported a COVID-19 diagnosis either via laboratory tests or clinical assessment. Importantly, smell, taste, and chemesthetic function were each significantly reduced compared to their status before the disease. Difference scores (maximum possible change ±100) revealed a mean reduction of smell (-79.7 ± 28.7, mean ± standard deviation), taste (-69.0 ± 32.6), and chemesthetic (-37.3 ± 36.2) function during COVID-19. Qualitative changes in olfactory ability (parosmia and phantosmia) were relatively rare and correlated with smell loss. Importantly, perceived nasal obstruction did not account for smell loss. Furthermore, chemosensory impairments were similar between participants in the laboratory test and clinical assessment groups. These results show that COVID-19-associated chemosensory impairment is not limited to smell but also affects taste and chemesthesis. The multimodal impact of COVID-19 and the lack of perceived nasal obstruction suggest that severe acute respiratory syndrome coronavirus strain 2 (SARS-CoV-2) infection may disrupt sensory-neural mechanisms. © 2020 The Author(s) 2020. Published by Oxford University Press. All rights reserved

    Universal characterization of wall turbulence for fluids with strong property variations

    No full text
    Wall-bounded turbulence involving mixing of scalars, such as temperature or concentration fields, play an important role in many engineering applications. In applications with large temperature or concentration differences, the variation of scalar dependent thermos physical properties can be strong. In such cases the strong coupling between energy and momentum alters the conventional behavior of turbulence. This alteration results in peculiar momentum and heat transfer characteristics, for which conventional scaling laws for constant property flows fail and cannot be applied. The aim of this work is to characterize wall bounded turbulence for fluids that have large near-wall gradients in thermos physical properties. The focus is on the variable inertia effects at the low-Mach number limit without the influence of buoyancy.Energy Technolog

    Scaling and modelling of turbulence in variable property channel flows

    No full text
    We derive an alternative formulation of the turbulent kinetic energy equation for flows with strong near-wall density and viscosity gradients. The derivation is based on a scaling transformation of the Navier-Stokes equations using semi-local quantities. A budget analysis of the semi-locally scaled turbulent kinetic energy equation shows that, for several variable property low-Mach-number channel flows, the 'leading-order effect' of variable density and viscosity on turbulence in wall bounded flows can effectively be characterized by the semi-local Reynolds number. Moreover, if a turbulence model is solved in its semi-locally scaled form, we show that an excellent agreement with direct numerical simulations is obtained for both low- and high-Mach-number flows, where conventional modelling approaches fail.Accepted Author VersionEnergy Technolog

    Scalar statistics in variable property turbulent channel flows

    No full text
    Direct numerical simulation of fully developed, internally heated channel flows with isothermal walls is performed using the low-Mach-number approximation of Navier-Stokes equation to investigate the influence of temperature-dependent properties on turbulent scalar statistics. Different constitutive relations for density ρ, viscosity μ, and thermal conductivity λ as a function of temperature are prescribed in order to characterize the turbulent scalar statistics. It is shown that the dominant effect caused by property variations on scalar statistics can be parameterized by two nondimensional parameters, namely the semilocal Reynolds number Re★τ≡Reτ√(¯ρ/ρw)/(¯¯μ/μw) (the bar and subscript w denote Reynolds averaging and wall value respectively, while Reτ is the friction Reynolds number based on wall values), and the local Prandtl number Pr★=Prw(¯¯μ/μw)/(¯λ/λw) (Prw is the molecular Prandtl number based on wall values). Near-wall gradients in Re★τ modulate the turbulent heat flux generation mechanism because of structural changes in turbulence. However, the influence of these modulations on the inner scaling of turbulent heat conductivity normalized by local mean viscosity is shown to be weak. Using this observation, a temperature transformation is derived that is invariant of Re★τ variations and only exhibits a Pr★-dependent shift.Energy Technolog

    Turbulence radiation interaction in channel flow with various optical depths

    Get PDF
    The present work consists of an investigation of the turbulence radiation interaction (TRI) in a radiative turbulent channel flow of grey gas bounded by isothermal hot and cold walls. The optical thickness of the channel is varied from 0.1 to 10 to observe different regimes of TRI. A high-resolution finite volume method for radiative heat transfer is employed and coupled with the direct numerical simulation (DNS) of the flow. The resulting effects of TRI on temperature statistics are strongly dependent on the considered optical depth. In particular, the contrasting role of emission and absorption is highlighted. For a low optical thickness the effect of radiative fluctuations on temperature statistics is low and causes the reduction of temperature variance through the dissipating action of emission. On the other hand, while increasing optical thickness to relatively high levels, the dissipation of temperature variance is balanced, at low wavenumbers in the turbulence spectrum, through the preferential action of absorption, which increases the large-scale temperature fluctuations. A significant rise in the effect of radiation on the temperature variance can be observed as a consequence of the reduction of radiative heat transfer length scales.Energy TechnologyFluid Mechanic

    Direct numerical simulation of turbulent flow with supercritical fluid in a heated pipe

    No full text
    This work investigates turbulent heat transfer to a pipe flow with a fluid close to its vapour-liquid critical point. The flow is simulated using Direct Numerical Simulations (DNS) of the anelastic Navier-Stokes equations at a Reynolds number of Ret = 360, based on the friction velocity ut at the inlet and the diameter of the pipe. Turbulent statistics for two cases with forced and mixed convection are discussed. A decrease in turbulent kinetic energy is observed for both cases due to flow acceleration and buoyancy effects. Furthermore it is observed that the correlation between turbulent heat flux and Reynolds stresses is lower than in subcritical flows.Process and EnergyMechanical, Maritime and Materials Engineerin

    Effect of viscosity and density gradients on turbulent channel flows

    No full text
    We perform Direct Numerical Simulations (DNS) of a turbulent channel flow with temperature dependent density and viscosity. The Navier-Stokes equations are solved using their low Mach number formulation. In the simulations performed, the fluid is internally heated and the temperature at the walls is fixed. The friction Reynolds number based on half channel height and wall friction velocity is Re? = 395. The modulation of turbulence, which is caused by the density and viscosity gradients, is characterized using the semi-local scaling of Huang et al. [1995, JFM].Process and EnergyMechanical, Maritime and Materials Engineerin

    Linear stability of buffer layer streaks in turbulent channels with variable density and viscosity

    No full text
    We investigate the stability of streaks in the buffer layer of turbulent channel flows with temperature-dependent density and viscosity by means of linear theory. The adopted framework consists of an extended set of the Orr-Sommerfeld-Squire equations that accounts for density and viscosity nonuniformity in the direction normal to the walls. The base flow profiles for density, viscosity, and velocity are averaged from direct numerical simulations (DNSs) of fully developed turbulent channel flows. We find that the inner scaling based on semilocal quantities provides an effective parametrization of the effect of variable properties on the linearized flow. The spanwise spacing of optimal buffer layer streaks scales to λz,opt≈90 for all cases considered and the maximum energy amplification decreases, compared to the one for a flow with constant properties, if the semilocal Reynolds number Reτ increases away from the walls, consistently with less energetic streaks observed in DNSs of turbulent channels. A secondary stability analysis of the two-dimensional velocity profile formed by the mean turbulent velocity and the nonlinearly saturated optimal streaks predicts a streamwise instability mode with wavelength λx,cr≈230 in semilocal units, regardless of the fluid property distribution across the channel. The threshold for the onset of the secondary instability is reduced, compared to a constant property flow, if Reτ increases away from the walls, which explains the more intense ejection events reported in DNSs. The opposite behavior is predicted by the linear theory for decreasing Reτ, in accord with DNS observations. We finally show that the phase velocity of the critical mode of secondary instability agrees well with the convection velocity calculated by DNSs in the near-wall region for both constant and variable viscosity flows.Energy Technolog
    corecore