115 research outputs found

    SLM-based Digital Adaptive Coronagraphy: Current Status and Capabilities

    Full text link
    Active coronagraphy is deemed to play a key role for the next generation of high-contrast instruments, notably in order to deal with large segmented mirrors that might exhibit time-dependent pupil merit function, caused by missing or defective segments. To this purpose, we recently introduced a new technological framework called digital adaptive coronagraphy (DAC), making use of liquid-crystal spatial light modulators (SLMs) display panels operating as active focal-plane phase mask coronagraphs. Here, we first review the latest contrast performance, measured in laboratory conditions with monochromatic visible light, and describe a few potential pathways to improve SLM coronagraphic nulling in the future. We then unveil a few unique capabilities of SLM-based DAC that were recently, or are currently in the process of being, demonstrated in our laboratory, including NCPA wavefront sensing, aperture-matched adaptive phase masks, coronagraphic nulling of multiple star systems, and coherent differential imaging (CDI).Comment: 14 pages, 9 figures, to appear in Proceedings of the SPIE, paper 10706-9

    A simple optimized amplitude pupil mask for attempting to direct imaging of Proxima b with SPHERE/ZIMPOL at VLT

    Full text link
    Proxima b is a terrestrial exoplanet orbiting in the habitable zone of our closest star Proxima Centauri. The separation between the planet and the star is about 40 mas and this is with current instruments only reachable with direct imaging, using a visual extreme AO system like SPHERE/ZIMPOL. Unfortunately, the planet falls under the first airy ring at 2λ\lambda/D in the I band, which degrades achievable contrast. We present the design, optical simulations and testing of an amplitude pupil mask for ZIMPOL that reshapes the PSF, increasing the contrast at r=2λr = 2\lambda/D about an order of magnitude. The simple mask can be inserted directly into the current setup of SPHERE.Comment: 11 pages, 8 figures, Poster presented at SPIE Astronomical Telescopes and Instrumentation 201

    Implementing focal-plane phase masks optimized for real telescope apertures with SLM-based digital adaptive coronagraphy

    Get PDF
    Direct imaging of exoplanets or circumstellar disk material requires extreme contrast at the 10^(−6) to 10^(−12) levels at < 100 mas angular separation from the star. Focal-plane mask (FPM) coronagraphic imaging has played a key role in this field, taking advantage of progress in Adaptive Optics on ground-based 8 + m class telescopes. However, large telescope entrance pupils usually consist of complex, sometimes segmented, non-ideal apertures, which include a central obstruction for the secondary mirror and its support structure. In practice, this negatively impacts wavefront quality and coronagraphic performance, in terms of achievable contrast and inner working angle. Recent theoretical works on structured darkness have shown that solutions for FPM phase profiles, optimized for non-ideal apertures, can be numerically derived. Here we present and discuss a first experimental validation of this concept, using reflective liquid crystal spatial light modulators as adaptive FPM coronagraphs

    Implementing focal-plane phase masks optimized for real telescope apertures with SLM-based digital adaptive coronagraphy

    Get PDF
    Direct imaging of exoplanets or circumstellar disk material requires extreme contrast at the 10^(−6) to 10^(−12) levels at < 100 mas angular separation from the star. Focal-plane mask (FPM) coronagraphic imaging has played a key role in this field, taking advantage of progress in Adaptive Optics on ground-based 8 + m class telescopes. However, large telescope entrance pupils usually consist of complex, sometimes segmented, non-ideal apertures, which include a central obstruction for the secondary mirror and its support structure. In practice, this negatively impacts wavefront quality and coronagraphic performance, in terms of achievable contrast and inner working angle. Recent theoretical works on structured darkness have shown that solutions for FPM phase profiles, optimized for non-ideal apertures, can be numerically derived. Here we present and discuss a first experimental validation of this concept, using reflective liquid crystal spatial light modulators as adaptive FPM coronagraphs

    The Fast Atmospheric Self-Coherent Camera Technique: Laboratory Results and Future Directions

    Full text link
    Direct detection and detailed characterization of exoplanets using extreme adaptive optics (ExAO) is a key science goal of future extremely large telescopes (ELTs). However, wavefront errors will limit the sensitivity of this endeavor. Limitations for ground-based telescopes arise from both quasi-static and residual AO-corrected atmospheric wavefront errors, the latter of which generates short-lived aberrations that will average into a halo over a long exposure. We have developed and tested the framework for a solution to both of these problems using the self-coherent camera (SCC), to be applied to ground-based telescopes, called the Fast Atmospheric SCC Technique (FAST). In this paper we present updates of new and ongoing work for FAST, both in numerical simulation and in the laboratory. We first present numerical simulations that illustrate the scientific potential of FAST, including, with current 10-m telescopes, the direct detection of exoplanets reflected light and exo-Jupiters in thermal emission and, with future ELTs, the detection of habitable exoplanets. In the laboratory, we present the first characterizations of our proposed, and now fabricated, coronagraphic masks.Comment: submitted to Proceedings of Adaptive Optics for Extremely Large Telescopes

    A 3D Drizzle Algorithm for JWST and Practical Application to the MIRI Medium Resolution Spectrometer

    Full text link
    We describe an algorithm for application of the classic `drizzle' technique to produce 3d spectral cubes using data obtained from the slicer-type integral field unit (IFU) spectrometers on board the James Webb Space Telescope. This algorithm relies upon the computation of overlapping volume elements (composed of two spatial dimensions and one spectral dimension) between the 2d detector pixels and the 3d data cube voxels, and is greatly simplified by treating the spatial and spectral overlaps separately at the cost of just 0.03% in spectrophotometric fidelity. We provide a matrix-based formalism for the computation of spectral radiance, variance, and covariance from arbitrarily dithered data and comment on the performance of this algorithm for the Mid-Infrared Instrument's Medium Resolution IFU Spectrometer (MIRI MRS). We derive a series of simplified scaling relations to account for covariance between cube spaxels in spectra extracted from such cubes, finding multiplicative factors ranging from 1.5 to 3 depending on the wavelength range and kind of data cubes produced. Finally, we discuss how undersampling produces periodic amplitude modulations in the extracted spectra in addition to those naturally produced by fringing within the instrument; reducing such undersampling artifacts below 1% requires a 4-point dithering strategy and spectral extraction radii of 1.5 times the PSF FWHM or greater.Comment: 16 pages, 12 figures. Revised version resubmitted to A

    ERIS: revitalising an adaptive optics instrument for the VLT

    Get PDF
    ERIS is an instrument that will both extend and enhance the fundamental diffraction limited imaging and spectroscopy capability for the VLT. It will replace two instruments that are now being maintained beyond their operational lifetimes, combine their functionality on a single focus, provide a new wavefront sensing module that makes use of the facility Adaptive Optics System, and considerably improve their performance. The instrument will be competitive with respect to JWST in several regimes, and has outstanding potential for studies of the Galactic Center, exoplanets, and high redshift galaxies. ERIS had its final design review in 2017, and is expected to be on sky in 2020. This contribution describes the instrument concept, outlines its expected performance, and highlights where it will most excel.Comment: 12 pages, Proc SPIE 10702 "Ground-Based and Airborne Instrumentation for Astronomy VII

    Mid-Infrared Spectrum of the Disk around the Forming Companion GQ Lup B Revealed by JWST/MIRI

    Full text link
    GQ Lup B is a forming brown dwarf companion (M1030 MJM\sim10-30~M_J) showing evidence for an infrared excess associated with a disk surronding the companion itself. Here we present mid-infrared (MIR) observations of GQ Lup B with the Medium Resolution Spectrograph (MRS) on JWST, spanning 4.811.7 μ4.8-11.7~\mum. We remove the stellar contamination using reference differential imaging based on principal component analysis (PCA), demonstrating that the MRS can perform high-contrast science. Our observations provide a sensitive probe of the disk surrounding GQ Lup B. We find no sign of a silicate feature, similar to other disk surrounding very low mass objects, which likely implies significant grain growth (amin5 μa_{\mathrm{min}}\gtrsim5~\mum), and potentially dust settling. Additionally, we find that if the emission is dominated by an inner wall, the disk around the companion might have an inner cavity larger than the one set by sublimation. Conversely, if our data probe the emission from a thin flat disk, we find the disk to be very compact. More observations are required to confirm this finding and assess the vertical structure of the disk. This approach paves the path to the future study of circumplanetary disks and their physical properties. Our results demonstrate that MIR spectroscopic observations can reveal the physical characteristics of disks around forming companions, providing unique insights into the formation of giant planets, brown dwarfs and their satellites.Comment: 13 pages, 4 figures, accepted for publication in ApJ

    The MIRI/MRS Library I. Empirically correcting detector charge migration in unresolved sources

    Full text link
    The JWST has been collecting scientific data for over two years now. Scientists are now looking deeper into the data, which introduces the need to correct known systematic effects. Important limiting factors for the MIRI/MRS are the pointing accuracy, non-linearity, detector charge migration, detector scattering, the accuracy of the PSF model, and the complex interplay between these. The Cycle 2 programme 3779 proposed a 72-point intra-pixel dither raster of the calibration star 10-Lac. In this first work of the paper series, we aim to address the degeneracy between the non-linearity and BFE that affect the pixel voltage integration ramps of the MRS. Due to the low flux in the longer wavelengths, we only do this in the 4.9 to 11.7 micron region. We fitted the ramps per pixel and dither, in order to fold in the deviations from classical non-linearity that are caused by charge migration. The ramp shapes should be repeatable depending on the part of the PSF that is sampled. By doing so, we defined both a grid-based linearity correction, and an interpolated linearity correction. We find significant improvements compared to the uniform illumination assumption. The standard deviation on the pixel ramp residual non-linearity is between 70-90% smaller than the current standard pipeline when self-calibrating with the grid. We are able to interpolate these coefficients to apply to any unresolved source not on the grid points, resulting in an up to 70% smaller standard deviation on the residual deviation from linearity. The FWHM is up to 20% narrower. The depth of the fringes is now consistent up the ramp. Pointing-specific linearity corrections allow us to fix the systematic deviation in the slopes. We demonstrated this for unresolved sources. The discovered trends with PSF sampling suggest that, we may be able to model ramps for spatially extended and resolved illumination as well.Comment: 18 pages, 20 figures, Accepted for publication in A&

    The nature of point source fringes in mid-infrared spectra acquired with the James Webb Space Telescope

    Full text link
    The constructive and destructive interference in different layers of the James Webb Space Telescope (JWST) Mid-Infrared Instrument (MIRI) detector arrays modulate the detected signal as a function of wavelength. Additionally, sources of different spatial profiles show different fringe patterns. Dividing by a static fringe flat could hamper the scientific interpretation of sources whose fringes do not match that of the fringe flat. We find point source fringes measured by the MIRI Medium-Resolution Spectrometer (MRS) to be reproducible under similar observing conditions. We want, thus, to identify the variables, if they exist, that would allow for a parametrization of the signal variations induced by point source fringe modulations. We do this by analyzing MRS detector plane images acquired on the ground. We extracted the fringe profile of multiple point source observations and studied the amplitude and phase of the fringes as a function of field position and pixel sampling of the point spread function of the optical chain. A systematic variation in the amplitude and phase of the point source fringes is found over the wavelength range covered by the test sources (4.9-5.8 μ\mum). The variation depends on the fraction of the point spread function seen by the detector pixel. We identify the non-uniform pixel illumination as the root cause of the reported systematic variation. We report an improvement after correction of 50% on the 1σ\sigma standard deviation of the spectral continuum. A 50% improvement is also reported in line sensitivity for a benchmark test with a spectral continuum of 100 mJy. The improvement in the shape of weak lines is illustrated using a T Tauri model spectrum. Consequently, we verify that fringes of extended sources and potentially semi-extended sources and crowded fields can be simulated by combining multiple point source fringe transmissions.Comment: 17 pages, 31 figure
    corecore