10 research outputs found
Oxidative DNA damage in lung tissue from patients with COPD is clustered in functionally significant sequences
Lung tissue from COPD patients displays oxidative DNA damage. The present study determined whether oxidative DNA damage was randomly distributed or whether it was localized in specific sequences in either the nuclear or mitochondrial genomes. The DNA damage-specific histone, gamma-H2AX, was detected immunohistochemically in alveolar wall cells in lung tissue from COPD patients but not control subjects. A PCR-based method was used to search for oxidized purine base products in selected 200 bp sequences in promoters and coding regions of the VEGF, TGF-Ξ²1, HO-1, Egr1, and Ξ²-actin genes while quantitative Southern blot analysis was used to detect oxidative damage to the mitochondrial genome in lung tissue from control subjects and COPD patients. Among the nuclear genes examined, oxidative damage was detected in only 1 sequence in lung tissue from COPD patients: the hypoxic response element (HRE) of the VEGF promoter. The content of VEGF mRNA also was reduced in COPD lung tissue. Mitochondrial DNA content was unaltered in COPD lung tissue, but there was a substantial increase in mitochondrial DNA strand breaks and/or abasic sites. These findings show that oxidative DNA damage in COPD lungs is prominent in the HRE of the VEGF promoter and in the mitochondrial genome and raise the intriguing possibility that genome and sequence-specific oxidative DNA damage could contribute to transcriptional dysregulation and cell fate decisions in COPD
Oxidative DNA damage in lung tissue from patients with COPD is clustered in functionally significant sequences
Viktor M Pastukh1, Li Zhang2, Mykhaylo V Ruchko1, Olena Gorodnya1, Gina C Bardwell1, Rubin M Tuder2, Mark N Gillespie11Department of Pharmacology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, USA; 2Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado at Denver, Aurora, CO, USAAbstract: Lung tissue from COPD patients displays oxidative DNA damage. The present study determined whether oxidative DNA damage was randomly distributed or whether it was localized in specific sequences in either the nuclear or mitochondrial genomes. The DNA damage-specific histone, gamma-H2AX, was detected immunohistochemically in alveolar wall cells in lung tissue from COPD patients but not control subjects. A PCR-based method was used to search for oxidized purine base products in selected 200 bp sequences in promoters and coding regions of the VEGF, TGF-β1, HO-1, Egr1, and β-actin genes while quantitative Southern blot analysis was used to detect oxidative damage to the mitochondrial genome in lung tissue from control subjects and COPD patients. Among the nuclear genes examined, oxidative damage was detected in only 1 sequence in lung tissue from COPD patients: the hypoxic response element (HRE) of the VEGF promoter. The content of VEGF mRNA also was reduced in COPD lung tissue. Mitochondrial DNA content was unaltered in COPD lung tissue, but there was a substantial increase in mitochondrial DNA strand breaks and/or abasic sites. These findings show that oxidative DNA damage in COPD lungs is prominent in the HRE of the VEGF promoter and in the mitochondrial genome and raise the intriguing possibility that genome and sequence-specific oxidative DNA damage could contribute to transcriptional dysregulation and cell fate decisions in COPD.Keywords: DNA damage, VEGF hypoxic response element, mtDNA, COP
Effect of Bariatric Surgery on Plasma Cell-Free Mitochondrial DNA, Insulin Sensitivity and Metabolic Changes in Obese Patients
While improvement of mitochondrial function after bariatric surgery has been demonstrated, there is limited evidence about the effects of bariatric surgery on circulatory cell-free (cf) mitochondrial DNA (mtDNA) and intracellular mtDNA abundance. Plasma and peripheral blood mononuclear (PBM) cells were isolated from healthy controls (HC) and bariatric surgery patients before surgery and 2 weeks, 3 months, and 6 months after surgery. At baseline, the plasma level of short cf-mtDNA (ND6, ~100 bp) fragments was significantly higher in obese patients compared to HC. But there was no significant variation in mean ND6 values post-surgery. A significant positive correlation was observed between preop plasma ND6 levels and HgbA1c, ND6 and HOMA-IR 2 weeks post-surgery, and mtDNA content 6 months post-surgery. Interestingly, plasma from both HC and obese groups at all time points post-surgery contains long (~8 kb) cf-mtDNA fragments, suggesting the presence of near-intact and/or whole mitochondrial genomes. No significant variation was observed in mtDNA content post-surgery compared to baseline data in both PBM and skeletal muscle samples. Overall, bariatric surgery improved insulin sensitivity and other metabolic parameters without significant changes in plasma short cf-mtDNA levels or cellular mtDNA content. Our study provides novel insights about possible molecular mechanisms underlying the metabolic effects of bariatric surgery and suggests the development of new generalized approaches to characterize cf-mtDNA
Plasma mitochondrial DNA is elevated in obese type 2 diabetes mellitus patients and correlates positively with insulin resistance.
Cells damaged by mechanical or infectious injury release proinflammatory mitochondrial DNA (mtDNA) fragments into the circulation. We evaluated the relation between plasma levels of mtDNA fragments in obese type 2 diabetes mellitus (T2DM) patients and measures of chronic inflammation and insulin resistance. In 10 obese T2DM patients and 12 healthy control (HC) subjects, we measured levels of plasma cell-free mtDNA with quantitative real-time polymerase chain reaction, and mtDNA damage in skeletal muscle with quantitative alkaline Southern blot. Also, markers of systemic inflammation and oxidative stress in skeletal muscle were measured. Plasma levels of mtDNA fragments, mtDNA damage in skeletal muscle and plasma tumor necrosis factor Ξ± levels were greater in obese T2DM patients than HC subjects. Also, the abundance of plasma mtDNA fragments in obese T2DM patients levels positively correlated with insulin resistance. To the best of our knowledge, this is the first published evidence that elevated level of plasma mtDNA fragments is associated with mtDNA damage and oxidative stress in skeletal muscle and correlates with insulin resistance in obese T2DM patients. Plasma mtDNA may be a useful biomarker for predicting and monitoring insulin resistance in obese patients