129 research outputs found

    Genetic analysis of hybridization and introgression between wild mongoose and brown lemurs.

    Get PDF
    BACKGROUND: Hybrid zones generally represent areas of secondary contact after speciation. The nature of the interaction between genes of individuals in a hybrid zone is of interest in the study of evolutionary processes. In this study, data from nuclear microsatellites and mitochondrial DNA sequences were used to genetically characterize hybridization between wild mongoose lemurs (Eulemur mongoz) and brown lemurs (E. fulvus) at Anjamena in west Madagascar. RESULTS: Two segments of mtDNA have been sequenced and 12 microsatellite loci screened in 162 brown lemurs and mongoose lemurs. Among the mongoose lemur population at Anjamena, we identified two F1 hybrids (one also having the mtDNA haplotype of E. fulvus) and six other individuals with putative introgressed alleles in their genotype. Principal component analysis groups both hybrids as intermediate between E. mongoz and E. fulvus and admixture analyses revealed an admixed genotype for both animals. Paternity testing proved one F1 hybrid to be fertile. Of the eight brown lemurs genotyped, all have either putative introgressed microsatellite alleles and/or the mtDNA haplotype of E. mongoz. CONCLUSION: Introgression is bidirectional for the two species, with an indication that it is more frequent in brown lemurs than in mongoose lemurs. We conclude that this hybridization occurs because mongoose lemurs have expanded their range relatively recently. Introgressive hybridization may play an important role in the unique lemur radiation, as has already been shown in other rapidly evolving animals.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Supermassive Black Holes in the Sbc Spiral Galaxies NGC 3310, NGC 4303 and NGC 4258

    Get PDF
    We have undertaken an HST Space Telescope Imaging Spectrograph survey of 54 late type spiral galaxies to study the scaling relations between black holes and their host spheroids at the low mass end. Our aim is to measure black hole masses or to set upper limits for a sizeable sample of spiral galaxies. In this paper we present new Space Telescope Imaging Spectrograph (STIS) observations of three spiral galaxies, NGC 4303, NGC 3310 and NGC 4258. The bright optical emission lines Hα λ 6564Å, [NII] λλ 6549, 6585Å and [SII] λλ 6718, 6732Å were used to study the kinematics of the ionized gas in the nuclear region of each galaxy with a ∼ 0.07′′ spatial resolution. Our STIS data for NGC 4258 were analyzed in conjunction with archival ones to compare the gas kinematical estimate of the black hole mass with the accurate value from H20-maser observations. In NGC 3310, the observed gas kinematics is well matched by a circularly rotating disk model but we are only able to set an upper limit to the BH mass which, taking into account the allowed disk inclinations, varies in the range 5.0 × 106 − 4.2 × 107M ⊙ at the 95% confidence level. In NGC 4303 the kinematical data require the presence of a BH with mass MBH = (5.0)+0.87 −2.26 × 106M ⊙ (for a disk inclination i = 70 deg) but the weak agreement between data and disk model does not allow us to consider this measurement completely reliable. If the allowed inclination values are taken into account, MBH varies in the range 6.0 × 105 − 1.6 × 107M ⊙ at the 95% confidence level. In NGC 4258, the observed kinematics require the presence of a black hole with MBH = (7.9)+6.2 −3.5 × 107M ⊙ (i = 60 deg) and, taking into account reasonable limits for the inclination, MBH is in the range 2.5× 107 – 2.6× 108M ⊙ at the 95% confidence level. This result is in good agreement with the published value (3.9 ± 0.1) × 107M ⊙ , derived from H2O-maser observations. As in the case of NGC 4303, the agreement between observed and model kinematics is not strong but this does not affect the recovery of the correct MBH value. Our attempt at measuring BH masses in these 3 late type Sbc spiral galaxies has shown that these measurements are very challenging and at the limit of the highest spatial resolution currently available. Nonetheless our estimates are in good agreement with the scaling relations between black holes and their host spheroids suggesting that (i) they are reliable and (ii) black holes in spiral galaxies follows the same scaling relations as those in more massive early-type galaxies. A crucial test for the gas kinematical method, the correct recovery of the known BH mass in NGC 4258, has been successful

    The supermassive black hole in Centaurus A: a benchmark for gas kinematical measurements

    Get PDF
    We present new HST/STIS observations of Centaurus A. [SIII] 9533A was used to study the kinematics in the nuclear region with a 0.1" spatial resolution. The STIS data and the VLT/ISAAC spectra by Marconi et al. (2001) provide independent and consistent measures of the BH mass, which are in agreement with our previous estimate based on the ISAAC data alone: MBH=(1.1+/-0.1) 10^8 Msun for a disk inclination of i=25deg or or MBH=(6.5+/-0.7) 10^7 Msun for i=35deg, the largest i value allowed by the data. We find that the choice of the intrinsic surface brightness distribution, a crucial element in the modeling, has no effects on MBH but has a large impact on the gas velocity dispersion. A mismatch between the observed and model velocity dispersion is not necessarily an indication of non-circular motions or kinematically hot gas, but is as easily due to an inaccurate computation arising from too course a model grid, or the adoption of an intrinsic brightness distribution which is too smooth. The observed velocity dispersion, line profiles and the higher order moments in the Hermite expansion, h_3 and h_4, are consistent with emission from a rotating disk. Results from gas kinematical estimate are in good agreement with a recent stellar dynamical estimate of MBH. The BH mass in Centaurus A agrees with the correlation with infrared luminosity and mass of the host spheroid but is not in disagreement with the stellar velocity dispersion if one takes into account the intrinsic scatter of the MBH-sigma correlation. Finally, using HST data we can constrain the size of any cluster of dark objects alternative to a BH to r<0.035" (~0.6pc). Thus Centaurus A ranks among the best cases for supermassive Black Holes in galactic nuclei. (ABRIDGED)Comment: Astronomy and Astrophysics in press; minor changes following referee repor

    The quasar M_bh - M_host relation through Cosmic Time I - Dataset and black hole masses

    Full text link
    We study the M_bh - M_host relation as a function of Cosmic Time in a sample of 96 quasars from z=3 to the present epoch. In this paper we describe the sample, the data sources and the new spectroscopic observations. We then illustrate how we derive M_bh from single-epoch spectra, pointing out the uncertainties in the procedure. In a companion paper, we address the dependence of the ratio between the black hole mass and the host galaxy luminosity and mass on Cosmic Time.Comment: 16 pages, 6 figures, 5 tables. Accepted for publication in MNRA

    Novel opsin gene variation in large-bodied, diurnal lemurs

    Full text link
    Some primate populations include both trichromatic and dichromatic (red-green colour blind) individuals due to allelic variation at the X-linked opsin locus. This polymorphic trichromacy is well described in day-active New World monkeys. Less is known about colour vision in Malagasy lemurs, but, unlike New World monkeys, only some day-active lemurs are polymorphic, while others are dichromatic. The evolutionary pressures underlying these differences in lemurs are unknown, but aspects of species ecology, including variation in activity pattern, are hypothesized to play a role. Limited data on X-linked opsin variation in lemurs make such hypotheses difficult to evaluate. We provide the first detailed examination of X-linked opsin variation across a lemur clade (Indriidae). We sequenced the X-linked opsin in the most strictly diurnal and largest extant lemur, Indri indri, and nine species of smaller, generally diurnal indriids (Propithecus). Although nocturnal Avahi (sister taxon to Propithecus) lacks a polymorphism, at least eight species of diurnal indriids have two or more X-linked opsin alleles. Four rainforest-living taxa-I. indri and the three largest Propithecus species-have alleles not previously documented in lemurs. Moreover, we identified at least three opsin alleles in Indri with peak spectral sensitivities similar to some New World monkeys

    Quasar Host Galaxies in the FORS Deep Field

    Full text link
    (abriged)In this paper we study different properties of quasars and their host galaxies at high redshifts up to z~3.4. We compare our results to those of other authors and discuss the correlation between galaxy evolution and quasar activity. We analysed broad-band images in eight filters (from U to K) of eight quasars in the FORS Deep Field with redshifts between z=0.87 and z=3.37. A fully 2-dimensional decomposition was carried out to detect and resolve the host galaxies. We were able to resolve the host galaxies of two out of eight quasars between z=0.87 and z=2.75. Additionally, two host galaxies were possibly resolved. The resolved low-redshift quasar (z=0.9) was identified as a late type galaxy with a moderate star formation rate of 1.8 M_{sun}/yr hosting a supermassive black hole with a mass of <10^{8}M_{sun}. The resolved high redshift host galaxy (z=2.8) shows moderate star formation of 4.4-6.9 M_{sun}/yr, for the black hole mass we found a lower limit of >10^{7}M_{sun}. All quasars host supermassive black hole with masses in the range ~10^{7}-10^{9}M_{sun}. Our findings are well consistent with those of other authors.Comment: 16 pages, 5 figures, 11 tables, accepted for publication in A&

    Structural Analysis of a Repetitive Protein Sequence Motif in Strepsirrhine Primate Amelogenin

    Get PDF
    Strepsirrhines are members of a primate suborder that has a distinctive set of features associated with the development of the dentition. Amelogenin (AMEL), the better known of the enamel matrix proteins, forms 90% of the secreted organic matrix during amelogenesis. Although AMEL has been sequenced in numerous mammalian lineages, the only reported strepsirrhine AMEL sequences are those of the ring-tailed lemur and galago, which contain a set of additional proline-rich tandem repeats absent in all other primates species analyzed to date, but present in some non-primate mammals. Here, we first determined that these repeats are present in AMEL from three additional lemur species and thus are likely to be widespread throughout this group. To evaluate the functional relevance of these repeats in strepsirrhines, we engineered a mutated murine amelogenin sequence containing a similar proline-rich sequence to that of Lemur catta. In the monomeric form, the MQP insertions had no influence on the secondary structure or refolding properties, whereas in the assembled form, the insertions increased the hydrodynamic radii. We speculate that increased AMEL nanosphere size may influence enamel formation in strepsirrhine primates
    corecore