4,441 research outputs found

    High Energy Neutrinos with a Mediterranean Neutrino Telescope

    Get PDF
    The high energy neutrino detection by a km^3 Neutrino Telescope placed in the Mediterranean sea provides a unique tool to both determine the diffuse astrophysical neutrino flux and the neutrino-nucleon cross section in the extreme kinematical region, which could unveil the presence of new physics. Here is performed a brief analysis of possible NEMO site performances.Comment: 4 pages, 3 figures, Proceedings of the 30th ICRC 200

    Disentangling neutrino-nucleon cross section and high energy neutrino flux with a km^3 neutrino telescope

    Get PDF
    The energy--zenith angular event distribution in a neutrino telescope provides a unique tool to determine at the same time the neutrino-nucleon cross section at extreme kinematical regions, and the high energy neutrino flux. By using a simple parametrization for fluxes and cross sections, we present a sensitivity analysis for the case of a km^3 neutrino telescope. In particular, we consider the specific case of an under-water Mediterranean telescope placed at the NEMO site, although most of our results also apply to an under-ice detector such as IceCube. We determine the sensitivity to departures from standard values of the cross sections above 1 PeV which can be probed independently from an a-priori knowledge of the normalization and energy dependence of the flux. We also stress that the capability to tag downgoing neutrino showers in the PeV range against the cosmic ray induced background of penetrating muons appears to be a crucial requirement to derive meaningful constraints on the cross section.Comment: 10 pages, 28 figure

    Complete trails of co-authorship network evolution

    Full text link
    The rise and fall of a research field is the cumulative outcome of its intrinsic scientific value and social coordination among scientists. The structure of the social component is quantifiable by the social network of researchers linked via co-authorship relations, which can be tracked through digital records. Here, we use such co-authorship data in theoretical physics and study their complete evolutionary trail since inception, with a particular emphasis on the early transient stages. We find that the co-authorship networks evolve through three common major processes in time: the nucleation of small isolated components, the formation of a tree-like giant component through cluster aggregation, and the entanglement of the network by large-scale loops. The giant component is constantly changing yet robust upon link degradations, forming the network's dynamic core. The observed patterns are successfully reproducible through a new network model

    Std fimbriae-fucose interaction increases Salmonella-induced intestinal inflammation and prolongs colonization

    Get PDF
    Author summary The intestinal epithelium is a crucial biological interface, interacting with both commensal and pathogenic microorganisms. It’s lined with heavily glycosylated proteins and glycolipids which can act as both attachment sites and energy sources for intestinal bacteria. Fut2, the enzyme governing epithelial α1,2-fucosylation, has been implicated in the interaction between microbes and intestinal epithelial cells. Salmonella is one of the most important bacterial gastrointestinal pathogens affecting millions of people worldwide. Salmonella possesses fimbrial and non-fimbrial adhesins which can be used to adhere to host cells. Here we show that Salmonella expresses Std fimbriae in the gastrointestinal tract in vivo and exploit Std fimbriae to bind fucosylated structures in the mucus and on the intestinal epithelium. Furthermore, we demonstrate that the Std fimbriae-fucose interaction is necessary for bacterial colonization of the intestine and for triggering intestinal inflammation. These data lend new insights into bacterial adhesion-epithelial interactions which are essential for bacterial pathogenesis and key factors in determining tissue tropism and host susceptibility to infectious disease

    Density-Matrix functional theory of strongly-correlated lattice fermions

    Full text link
    A density functional theory (DFT) of lattice fermion models is presented, which uses the single-particle density matrix gamma_{ij} as basic variable. A simple, explicit approximation to the interaction-energy functional W[gamma] of the Hubbard model is derived from exact dimer results, scaling properties of W[gamma] and known limits. Systematic tests on the one-dimensional chain show a remarkable agreement with theBethe-Ansatz exact solution for all interaction regimes and band fillings. New results are obtained for the ground-state energyand charge-excitation gap in two dimensions. A successful description of strong electron correlations within DFT is achieved.Comment: 15 pages, 6 figures Submitted to PR

    Sensitivity on Earth Core and Mantle densities using Atmospheric Neutrinos

    Get PDF
    Neutrino radiography may provide an alternative tool to study the very deep structures of the Earth. Though these measurements are unable to resolve the fine density layer features, nevertheless the information which can be obtained are independent and complementary to the more conventional seismic studies. The aim of this paper is to assess how well the core and mantle averaged densities can be reconstructed through atmospheric neutrino radiography. We find that about a 2% sensitivity for the mantle and 5% for the core could be achieved for a ten year data taking at an underwater km^3 Neutrino Telescope. This result does not take into account systematics related to the details of the experimental apparatus.Comment: 11 pages, 11 figures, accepted for publication in JCA

    A Model for Ferromagnetic Nanograins with Discrete Electronic States

    Full text link
    We propose a simple phenomenological model for an ultrasmall ferromagnetic grain, formulated in terms of the grain's discrete energy levels. We compare the model's predictions with recent measurements of the discrete tunneling spectrum through such a grain. The model can qualitatively account for the observed features if we assume (i) that the anisotropy energy varies among different eigenstates of one grain, and (ii) that nonequilibrium spin accumulation occurs.Comment: 4 pages, 2 figure

    Optimal network topologies: Expanders, Cages, Ramanujan graphs, Entangled networks and all that

    Full text link
    We report on some recent developments in the search for optimal network topologies. First we review some basic concepts on spectral graph theory, including adjacency and Laplacian matrices, and paying special attention to the topological implications of having large spectral gaps. We also introduce related concepts as ``expanders'', Ramanujan, and Cage graphs. Afterwards, we discuss two different dynamical feautures of networks: synchronizability and flow of random walkers and so that they are optimized if the corresponding Laplacian matrix have a large spectral gap. From this, we show, by developing a numerical optimization algorithm that maximum synchronizability and fast random walk spreading are obtained for a particular type of extremely homogeneous regular networks, with long loops and poor modular structure, that we call entangled networks. These turn out to be related to Ramanujan and Cage graphs. We argue also that these graphs are very good finite-size approximations to Bethe lattices, and provide almost or almost optimal solutions to many other problems as, for instance, searchability in the presence of congestion or performance of neural networks. Finally, we study how these results are modified when studying dynamical processes controlled by a normalized (weighted and directed) dynamics; much more heterogeneous graphs are optimal in this case. Finally, a critical discussion of the limitations and possible extensions of this work is presented.Comment: 17 pages. 11 figures. Small corrections and a new reference. Accepted for pub. in JSTA

    Higher Education as modulator of gender inequalities: Evidence of the Spanish case

    Get PDF
    Raising educational levels may help to reduce inequalities between men and women in certain social and economic aspects. Using statistics for Spain, we analyse labour market behaviours such as the rates of activity and unemployment by sex according to the educational level. The results reveal that the differences between men and women decrease as the educational level increases. In particular, the modulator effect of education is very important at the higher level, where differences in labour market behaviour between men and women with an university education almost disappear, except in terms of salaries. Nevertheless, it can be seen that the current economic crisis has reduced the modulator role of education in gender differences in Spain

    The Error and Repair Catastrophes: A Two-Dimensional Phase Diagram in the Quasispecies Model

    Full text link
    This paper develops a two gene, single fitness peak model for determining the equilibrium distribution of genotypes in a unicellular population which is capable of genetic damage repair. The first gene, denoted by σvia \sigma_{via} , yields a viable organism with first order growth rate constant k>1 k > 1 if it is equal to some target ``master'' sequence σvia,0 \sigma_{via, 0} . The second gene, denoted by σrep \sigma_{rep} , yields an organism capable of genetic repair if it is equal to some target ``master'' sequence σrep,0 \sigma_{rep, 0} . This model is analytically solvable in the limit of infinite sequence length, and gives an equilibrium distribution which depends on \mu \equiv L\eps , the product of sequence length and per base pair replication error probability, and \eps_r , the probability of repair failure per base pair. The equilibrium distribution is shown to exist in one of three possible ``phases.'' In the first phase, the population is localized about the viability and repairing master sequences. As \eps_r exceeds the fraction of deleterious mutations, the population undergoes a ``repair'' catastrophe, in which the equilibrium distribution is still localized about the viability master sequence, but is spread ergodically over the sequence subspace defined by the repair gene. Below the repair catastrophe, the distribution undergoes the error catastrophe when μ \mu exceeds \ln k/\eps_r , while above the repair catastrophe, the distribution undergoes the error catastrophe when μ \mu exceeds lnk/fdel \ln k/f_{del} , where fdel f_{del} denotes the fraction of deleterious mutations.Comment: 14 pages, 3 figures. Submitted to Physical Review
    corecore