824 research outputs found

    Preserving the world second largest hypersaline lake under future irrigation and climate change

    Get PDF
    Iran Urmia Lake, the world second largest hypersaline lake, has been largely desiccated over the last two decades resulting in socio-environmental consequences similar or even larger than the Aral Sea disaster. To rescue the lake a new water management plan has been proposed, a rapid 40% decline in irrigation water use replacing a former plan which intended to develop reservoirs and irrigation. However, none of these water management plans, which have large socio-economic impacts, have been assessed under future changes in climate and water availability. By adapting a method of environmental flow requirements (EFRs) for hypersaline lakes, we estimated annually 3.7·10âč mÂł water is needed to preserve Urmia Lake. Then, the Variable Infiltration Capacity (VIC) hydrological model was forced with bias-corrected climate model outputs for both the lowest (RCP2.6) and highest (RCP8.5) greenhouse-gas concentration scenarios to estimate future water availability and impacts of water management strategies. Results showed a 10% decline in future water availability in the basin under RCP2.6 and 27% under RCP8.5. Our results showed that if future climate change is highly limited (RCP2.6) inflow can be just enough to meet the EFRs by implementing the reduction irrigation plan. However, under more rapid climate change scenario (RCP8.5) reducing irrigation water use will not be enough to save the lake and more drastic measures are needed. Our results showed that future water management plans are not robust under climate change in this region. Therefore, an integrated approach of future land-water use planning and climate change adaptation is therefore needed to improve future water security and to reduce the desiccating of this hypersaline lake

    Defining New Global Land-use Map in 2050 by Including Environmental Flow Requirements

    Get PDF
    Allocation of agricultural commodities and water resources is subject to changes in climate, demographics and dietary patterns. The use of integrated assessment modeling frameworks that combine climate, hydrological, crop and economic models anticipate those future changes. Results from previous integrated assessments have almost always neglected water resources or included them only in a broad way. The focus of this study is on how the inclusion of water resources affects future land use and, in particular, how global change will influence repartition of irrigated and rainfed lands at global scale. We used two general circulation model (GCM) simulations of climate change scenario including a radiative forcing of 8.5 W/m2 (RCP8.5), the socio-economic scenario (SSP2: middle-of-road), and the Variable Monthly Flow (VMF) method to calculate environmental flow requirements (EFRs). Irrigation withdrawals were adjusted to a monthly time-step to account for biophysical water limitations at finer time resolution. Re-allocation of rainfed and irrigated land might be useful information for land-use planners and water managers at an international level. For example, some countries are likely to adopt measures to increase their water use efficiencies (irrigation system, soil and water conservation practices) to face water shortages, while others might consider improving their trade policy to avoid food shortage and to protect freshwater ecosystems

    Understanding the transgression of global and regional freshwater planetary boundaries

    Get PDF
    Freshwater ecosystems have been degraded due to intensive freshwater abstraction. Therefore, environmental flow requirements (EFRs) methods have been proposed to maintain healthy rivers and/or restore river flows. In this study, we used the Variable Monthly Flow (VMF) method to calculate the transgression of freshwater planetary boundaries: (1) natural deficits in which flow does not meet EFRs due to climate variability, and (2) anthropogenic deficits caused by water abstractions. The novelty is that we calculated spatially and cumulative monthly water deficits by river types including the frequency, magnitude and causes of environmental flow (EF) deficits (climatic and/or anthropogenic). Water deficit was found to be a regional rather than a global concern (less than 5% of total discharge). The results show that, from 1960 to 2000, perennial rivers with low flow alteration, such as the Amazon, had an EF deficit of 2–12% of the total discharge, and that the climate deficit was responsible for up to 75% of the total deficit. In rivers with high seasonality and high water abstractions such as the Indus, the total deficit represents up to 130% of its total discharge, 85% of which is due to withdrawals. We highlight the need to allocate water to humans and ecosystems sustainably. This article is part of the Royal Society Science+ meeting issue ‘Drought risk in the Anthropocene’

    Environmental flow deficit at global scale – implication on irrigated agriculture

    Get PDF
    Freshwater species belong to the most degraded ecosystem on earth. At the beginning of the 21st century, scientists have developed the concept of environmental flow requirements (Brisbane declaration 2003) with the aim of protecting freshwater species in the long term. However, the ecological state of rivers is different across the world depending on their fragmentation, on the presence of dams and reservoirs and on the degree of pollution. To implement new regulations on river flow, it is necessary to evaluate the degree of alteration of rivers which we called “environmental flow deficit”. The European water framework directive is still working on evaluating the ecological states of river across Europe. In this study, we calculated monthly environmental flow deficit with the global vegetation dynamic and hydrological model LPJml. Environmental flow requirements were first calculated with the Variable Monthly Flow method (Pastor et al., 2014). Then, we checked in each river basin where and when the actual flow (flow minus abstraction for irrigation) does not satisfy environmental flow requirements.We finally show examples of different river basins such as the Nile and the Amazon to show how climate and irrigation can impact river flow and harm freshwater ecosystems

    Accounting for environmental flow requirements in global water assessments

    Get PDF
    As the water requirement for food production and other human needs grows, quantification of environmental flow requirements (EFRs) is necessary to assess the amount of water needed to sustain freshwater ecosystems. EFRs are the result of the quantification of water necessary to sustain the riverine ecosystem, which is calculated from the mean of an environmental flow (EF) method. In this study, five EF methods for calculating EFRs were compared with 11 case studies of locally assessed EFRs. We used three existing methods (Smakhtin, Tennant, and Tessmann) and two newly developed methods (the variable monthly flow method (VMF) and the Q90_Q50 method). All methods were compared globally and validated at local scales while mimicking the natural flow regime. The VMF and the Tessmann methods use algorithms to classify the flow regime into high, intermediate, and low-flow months and they take into account intra-annual variability by allocating EFRs with a percentage of mean monthly flow (MMF). The Q90_Q50 method allocates annual flow quantiles (Q90 and Q50) depending on the flow season. The results showed that, on average, 37% of annual discharge was required to sustain environmental flow requirement. More water is needed for environmental flows during low-flow periods (46–71% of average low-flows) compared to high-flow periods (17–45% of average high-flows). Environmental flow requirements estimates from the Tennant, Q90_Q50, and Smakhtin methods were higher than the locally calculated EFRs for river systems with relatively stable flows and were lower than the locally calculated EFRs for rivers with variable flows. The VMF and Tessmann methods showed the highest correlation with the locally calculated EFRs (R2=0.91). The main difference between the Tessmann and VMF methods is that the Tessmann method allocates all water to EFRs in low-flow periods while the VMF method allocates 60% of the flow in low-flow periods. Thus, other water sectors such as irrigation can withdraw up to 40% of the flow during the low-flow season and freshwater ecosystems can still be kept in reasonable ecological condition. The global applicability of the five methods was tested using the global vegetation and the Lund-Potsdam-Jena managed land (LPJmL) hydrological model. The calculated global annual EFRs for fair ecological conditions represent between 25 and 46% of mean annual flow (MAF). Variable flow regimes, such as the Nile, have lower EFRs (ranging from 12 to 48% of MAF) than stable tropical regimes such as the Amazon (which has EFRs ranging from 30 to 67% of MAF)

    The future of irrigated agriculture under environmental flow requirements restrictions

    Get PDF
    Water is not an infinite resource and demand from irrigation, household and industry is constantly increasing. This study focused on including global water availability including environmental flow requirements with water withdrawal from irrigation and other sectors at a monthly time-step in the GLOBIOM model. This model allows readjustment of land-use allocation, crop management, consumption and international trade. The GLOBIOM model induces an endogenous change in water price depending on water supply and demand. In this study, the focus was on how the inclusion of water resources affects land-use and, in particular, how global change will influence repartition of irrigated and rainfed lands at global scale. We used the climate change scenario including a radiative forcing of 8.5 W/m2 (RCP8.5), the socio-economic scenario (SSP2: middle-of-road), and the environmental flow method based on monthly flow allocation (the Variable Monthly Flow method) with high and low restrictions. Irrigation withdrawals were adjusted to a monthly time-step to account for biophysical water limitations at finer time resolution. Our results show that irrigated land might decrease up to 40% on average depending on the choice of EFR restrictions. Several areas were identified as future hot-spots of water stress such as the Mediterranean and Middle-East regions. Other countries were identified to be in safe position in terms of water stress such as North-European countries. Re-allocation of rainfed and irrigated land might be useful information for land-use planners and water managers at an international level to decide on appropriate legislations on climate change mitigation/adaptation when exposure and sensitivity to climate change is high and/or on adaptation measures to face increasing water demand. For example, some countries are likely to adopt measures to increase their water use efficiencies (irrigation system, soil and water conservation practices) to face water shortages, while others might consider improving their trade policy to avoid food shortage

    Can forest management based on natural disturbances maintain ecological resilience?

    Get PDF
    Given the increasingly global stresses on forests, many ecologists argue that managers must maintain ecological resilience: the capacity of ecosystems to absorb disturbances without undergoing fundamental change. In this review we ask: Can the emerging paradigm of natural-disturbance-based management (NDBM) maintain ecological resilience in managed forests? Applying resilience theory requires careful articulation of the ecosystem state under consideration, the disturbances and stresses that affect the persistence of possible alternative states, and the spatial and temporal scales of management relevance. Implementing NDBM while maintaining resilience means recognizing that (i) biodiversity is important for long-term ecosystem persistence, (ii) natural disturbances play a critical role as a generator of structural and compositional heterogeneity at multiple scales, and (iii) traditional management tends to produce forests more homogeneous than those disturbed naturally and increases the likelihood of unexpected catastrophic change by constraining variation of key environmental processes. NDBM may maintain resilience if silvicultural strategies retain the structures and processes that perpetuate desired states while reducing those that enhance resilience of undesirable states. Such strategies require an understanding of harvesting impacts on slow ecosystem processes, such as seed-bank or nutrient dynamics, which in the long term can lead to ecological surprises by altering the forest's capacity to reorganize after disturbance

    Highlights from the Pierre Auger Observatory

    Full text link
    The Pierre Auger Observatory is the world's largest cosmic ray observatory. Our current exposure reaches nearly 40,000 km2^2 str and provides us with an unprecedented quality data set. The performance and stability of the detectors and their enhancements are described. Data analyses have led to a number of major breakthroughs. Among these we discuss the energy spectrum and the searches for large-scale anisotropies. We present analyses of our Xmax_{max} data and show how it can be interpreted in terms of mass composition. We also describe some new analyses that extract mass sensitive parameters from the 100% duty cycle SD data. A coherent interpretation of all these recent results opens new directions. The consequences regarding the cosmic ray composition and the properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray Conference, Rio de Janeiro 201

    A search for point sources of EeV photons

    Full text link
    Measurements of air showers made using the hybrid technique developed with the fluorescence and surface detectors of the Pierre Auger Observatory allow a sensitive search for point sources of EeV photons anywhere in the exposed sky. A multivariate analysis reduces the background of hadronic cosmic rays. The search is sensitive to a declination band from -85{\deg} to +20{\deg}, in an energy range from 10^17.3 eV to 10^18.5 eV. No photon point source has been detected. An upper limit on the photon flux has been derived for every direction. The mean value of the energy flux limit that results from this, assuming a photon spectral index of -2, is 0.06 eV cm^-2 s^-1, and no celestial direction exceeds 0.25 eV cm^-2 s^-1. These upper limits constrain scenarios in which EeV cosmic ray protons are emitted by non-transient sources in the Galaxy.Comment: 28 pages, 10 figures, accepted for publication in The Astrophysical Journa
    • 

    corecore