208 research outputs found

    Reaction of Q to thermal metamorphism in parent bodies: Experimental simulation

    Get PDF
    Planetary noble gases in chondrites are concentrated in an unidentified carrier phase, called “Q.” Phase Q oxidized at relatively low temperature in pure oxygen is a very minor part of insoluble organic matter (IOM), but has not been separated in a pure form. High‐pressure (HP) experiments have been used to test the effects of thermal metamorphism on IOM from the Orgueil (CI1) meteorite, at conditions up to 10 GPa and 700 °C. The effect of the treatment on carbon structural order was characterized by Raman spectroscopy of the carbon D and G bands. The Raman results show that the IOM becomes progressively more graphite‐like with increasing intensity and duration of the HP treatment. The carbon structural transformations are accompanied by an increase in the release temperatures for IOM carbon and Ar during stepped combustion (the former to a greater extent than the latter for the most HP treated sample) when compared with the original untreated Orgueil (CI1) sample. The Ar/C ratio also appears to vary in response to HP treatment. Since Ar is a part of Q, its release temperature corresponds to that for Q oxidation. Thus, the structural transformations of Q and IOM upon HP treatment are not equal. These results correspond to observations of thermal metamorphism in the meteorite parent bodies, in particular those of type 4 enstatite chondrites, e.g., Indarch (EH4), where graphitized IOM oxidized at significantly higher temperatures than Q (Verchovsky et al. 2002). Our findings imply that Q is less graphitized than most of the macromolecular carbonaceous material present during parent body metamorphism and is thus a carbonaceous phase distinct from other meteoritic IOM

    Occurrence and fate of chlorofluorocarbon plumes in groundwater

    Get PDF
    Abstract Chlorofluorocarbons (CFCs) are stable volatile organic compounds that have been manufactured since about 1930 and appeared thereafter in the atmos-and hydrospheres. Oceanographers use CFC analyses in the pg 1"' range as tracers for ocean mixing processes. In hydrogeology, it has been suggested that CFCs may be used similarly for age-dating of groundwater. We reviewed studies that report on CFCs in groundwater from 16 porous and fractured aquifers on three different continents. In 12 aquifers, groundwater was found to be locally contaminated with CFCs in concentrations exceeding equilibrium with respect to modem air. Reported sources of contaminants include direct industrial solvent spills, river water infiltration, and landfills. Natural attenuation of CFCs in aerobic aquifers is limited. Evidence that reductive dechlorination of CFCs is occurring in anaerobic aquifers is provided. Possible degradation products known to be toxic (HCFC-21) or even carcinogenic (HCFC-31) are rarely studied. In order to assess the vulnerability of aquifers, there is a need to better identify these compounds

    An algorithm for model fusion for distributed learning

    Get PDF
    In this paper, we discuss the problem of distributed learning for coalition operations. We consider a scenario where different coalition forces are running learning systems independently but want to merge the insights obtained from all the learning systems to share knowledge and use a single model combining all of their individual models. We consider the challenges involved in such fusion of models, and propose an algorithm that can find the right fused model in an efficient manner

    Variation of Accumulation Rates Over the Last Eight Centuries on the East Antarctic Plateau Derived from Volcanic Signals in Ice Cores

    Get PDF
    Volcanic signatures in ice-core records provide an excellent means to date the cores and obtain information about accumulation rates. From several ice cores it is thus possible to extract a spatio-temporal accumulation pattern. We show records of electrical conductivity and sulfur from firn cores from the Norwegian-USA scientific traverse during the International Polar Year 2007-2009 (IPY) through East Antarctica. Major volcanic eruptions are identified and used to assess century-scale accumulation changes. The largest changes seem to occur in the most recent decades with accumulation over the period 1963- 2007/08 being up to 25 % different from the long-term record. There is no clear overall trend, some sites show an increase in accumulation over the period 1963 to present while others show a decrease. Almost all of the sites above 3200 m above sea level (asl) suggest a decrease. These sites also show a significantly lower accumulation value than large-scale assessments both for the period 1963 to present and for the long-term mean at the respective drill sites. The spatial accumulation distribution is influenced mainly by elevation and distance to the ocean (continentality), as expected. Ground-penetrating radar data around the drill sites show a spatial variability within 10-20 % over several tens of kilometers, indicating that our drill sites are well representative for the area around them. Our results are important for large-scale assessments of Antarctic mass balance and model validation

    Vaginal bacterial diversity from healthy gilts and pregnant sows subjected to natural mating or artificial insemination

    Get PDF
    The profitability of commercial pig farms largely depends on the reproductive performance of gilts and sows. The aim of this study was to identify differences in the composition and diversity of vaginal microbiota between gilts (G) and pregnant (P) sows, both artificially inseminated (AI) and natural mating (NM). Samples were collected by scraping the vaginal mucosa of G (n = 10) and P (NM, n = 10 and AI, n = 7) sows. Samples were analysed by culture-dependent techniques and 16S-rRNA gene High-Throughput-Sequencing. The profiles of the cultured microbiota showed two distinctive clusters, one of them grouped four samples of P sows from the AI group. The vaginal microbiota from P had lower richness than G sows (Mann-Whitney/Kruskal-Wallis test, p < 0.01), but all vaginal samples had a similar diversity. The PERMANOVA analyses revealed significant differences (p < 0.01) between the microbial communities' structures from G and P sows. The bacteria phyla with the highest relative abundances were Proteobacteria (33.1%), followed by Firmicutes (32%), Cyanobacteria (13.3%) and Actinobacteria (13.2%). The relative abundance for phyla, families and genera was estimated and Proteobacteria was significantly higher (p = 0.038) in P than in G sows; Firmicutes was significantly lower in AI than G and NM sows. A “core microbiota” included Lactobacillus, Bacillus, Enterococcus, Acinetobacter and Pseudomonas. The results presented highlight the differences in the bacterial composition between G and P sows, as well as the changes in the microbial populations associated with the breeding method

    Protein-free formation of bone-like apatite: New insights into the key role of carbonation

    Get PDF
    International audienceThe nanometer-sized plate-like morphology of bone mineral is necessary for proper bone mechanics and physiology. However, mechanisms regulating the morphology of these mineral nanocrystals remain unclear. The dominant hypothesis attributes the size and shape regulation to organic-mineral interactions. Here, we present data supporting the hypothesis that physicochemical effects of carbonate integration within the apatite lattice control the morphology, size, and mechanics of bioapatite mineral crystals. Carbonated apatites synthesized in the absence of organic molecules presented plate-like morphologies and nanoscale crystallite dimensions. Experimentally-determined crystallite size, lattice spacing, solubility and atomic order were modified by carbonate concentration. Molecular dynamics (MD) simulations and density functional theory (DFT) calculations predicted changes in surface energy and elastic moduli with carbonate concentration. Combining these results with a scaling law predicted the experimentally observed scaling of size and energetics with carbonate concentration. The experiments and models describe a clear mechanism by which crystal dimensions are controlled by carbonate substitution. Furthermore, the results demonstrate that carbonate substitution is sufficient to drive the formation of bone-like crystallites. This new understanding points to pathways for biomimetic synthesis of novel, nanostructured biomaterials

    Changes in Black Carbon Deposition to Antarctica from Two Ice Core Records, A.D. 1850-2000

    Get PDF
    Continuous flow analysis was based on a steady sample flow and in-line detection of BC and other chemical substances as described in McConnell et al. (2007). In the cold room, previously cut one meter ice core sticks of 3x3cm, are melted continuously on a heated melter head specifically designed to eliminate contamination from the atmosphere or by the external parts of the ice. The melted ice from the most inner part of the ice stick is continuously pumped by a peristaltic pump and carried to a clean lab by Teflon lines. The recorded signal is continuous, integrating a sample volume of about 0.05 mL, for which the temporal resolution depends on the speed of melting, ice density and snow accumulation rate at the ice core drilling site. For annual accumulation derived from the WAIS and Law Dome ice cores, we assumed ~3.1 cm water equivalent uncertainty in each year's accumulation from short scale spatial variability (glaciological noise) which was determined from several measurements of annual accumulation in multiple parallel ice cores notably from the WAIS Divide ice core site (Banta et al., 2008) and from South Pole site (McConnell et al., 1997; McConnell et al., 2000). Refractory black carbon (rBC) concentrations were determined using the same method as in (Bisiaux et al., 2011) and adapted to continuous flow measurements as described by (McConnell et al., 2007). The technique uses a single particle intracavity laser induced incandescence photometer (SP2, Droplet Measurement Technologies, Boulder, Colorado) coupled to an ultrasonic nebulizer/desolvation (CETAC UT5000) Flow Injection Analysis (FIA). All analyses, sample preparation etc, were performed in a class 100 cleanroom using anti contamination "clean techniques". The samples were not acidified

    Sea ice and pollution-modulated changes in Greenland ice core methanesulfonate and bromine

    Get PDF
    Reconstruction of past changes in Arctic sea ice extent may be critical for understanding its future evolution. Methanesulfonate (MSA) and bromine concentrations preserved in ice cores have both been proposed as indicators of past sea ice conditions. In this study, two ice cores from central and north-eastern Greenland were analysed at sub-annual resolution for MSA (CH3_3SO3_3H) and bromine, covering the time period 1750–2010. We examine correlations between ice core MSA and the HadISST1 ICE sea ice dataset and consult back trajectories to infer the likely source regions. A strong correlation between the low-frequency MSA and bromine records during pre-industrial times indicates that both chemical species are likely linked to processes occurring on or near sea ice in the same source regions. The positive correlation between ice core MSA and bromine persists until the mid-20th century, when the acidity of Greenland ice begins to increase markedly due to increased fossil fuel emissions. After that time, MSA levels decrease as a result of declining sea ice extent but bromine levels increase. We consider several possible explanations and ultimately suggest that increased acidity, specifically nitric acid, of snow on sea ice stimulates the release of reactive Br from sea ice, resulting in increased transport and deposition on the Greenland ice sheet.This research was funded by the National Science Foundation, grant numbers 1023672 and 1204176

    Classification of fracture and non-fracture groups by analysis of coherent X-ray scatter

    Get PDF
    Osteoporotic fractures present a significant social and economic burden, which is set to rise commensurately with the aging population. Greater understanding of the physicochemical differences between osteoporotic and normal conditions will facilitate the development of diagnostic technologies with increased performance and treatments with increased efficacy. Using coherent X-ray scattering we have evaluated a population of 108 ex vivo human bone samples comprised of non-fracture and fracture groups. Principal component fed linear discriminant analysis was used to develop a classification model to discern each condition resulting in a sensitivity and specificity of 93% and 91%, respectively. Evaluating the coherent X-ray scatter differences from each condition supports the hypothesis that a causal physicochemical change has occurred in the fracture group. This work is a critical step along the path towards developing an in vivo diagnostic tool for fracture risk prediction

    A mineralogical study in contrasts: highly mineralized whale rostrum and human enamel

    Get PDF
    The outermost enamel of the human tooth and the rostrum of the whale Mesoplodon densirostris are two highly mineralized tissues that contain over 95wt.% mineral, i.e., bioapatite. However, the same mineral type (carbonated hydroxylapatite) does not yield the same material properties, as revealed by Raman spectroscopy, scanning electron microscopy, electron microprobe analysis, and synchrotron X-ray diffraction analysis. Overall, the outermost enamel of a tooth has more homogeneous physical and chemical features than the rostrum. Chemical comparison of rostrum and enamel shows bioapatite in the rostrum to be enriched in Na, Mg, CO3, and S, whereas the outermost enamel shows only a slightly enriched Cl concentration. Morphologically, mineral rods (at tens of μm scale), crystallites and prisms (at μm and sub-μm scale), and platelets (at tens of nm scale) all demonstrate less organized texture in the rostrum than in enamel. Such contrasts between two mineralized tissues suggest distinct pathways of biomineralization, e.g., the nature of the equilibrium between mineral and body fluid. This study illustrates the remarkable flexibility of the apatite mineral structure to match its chemical and physical properties to specific biological needs within the same animal or between species.The work was partially funded by NIH grant 1R21AR055184-01A2 and SRF for ROCS, SEM
    corecore