407 research outputs found
Thermomechanical properties of amorphous metallic tungsten-oxygen and tungsten-oxide coatings
In this work, we investigate the correlation between morphology, composition,
and the mechanical properties of metallic amorphous tungsten-oxygen and
amorphous tungsten-oxide films deposited by Pulsed Laser Deposition. This
correlation is investigated by the combined use of Brillouin Spectroscopy and
the substrate curvature method. The stiffness of the films is strongly affected
by both the oxygen content and the mass density. The elastic moduli show a
decreasing trend as the mass density decreases and the oxygen-tungsten ratio
increases. A plateaux region is detected in correspondence of the transition
between metallic and oxide films. The compressive residual stresses, moderate
stiffness and high local ductility that characterize compact amorphous
tungsten-oxide films make them promising for applications involving thermal or
mechanical loads. The coefficient of thermal expansion is quite high (i.e. 8.9
10 K), being strictly correlated to the amorphous
structure and stoichiometry of the films. Under thermal treatments they show a
quite low relaxation temperature (i.e. 450 K). They crystallize into the
monoclinic phase of WO starting from 670 K, inducing an increase
by about 70\% of material stiffness.Comment: The research leading to these results has also received funding from
the European Research Council Consolidator Grant ENSURE (ERC-2014-CoG No.
647554). The views and opinions expressed herein do not necessarily reflect
those of the European Commissio
Optimizing band-edge slow light in silicon-on-insulator waveguide gratings
A systematic analysis of photonic bands and group index in silicon grating waveguides is performed, in order to optimize band-edge slow-light behavior in integrated structures with low losses. A combination of numerical methods and perturbation theory is adopted. It is shown that a substantial increase of slow light bandwidth is achieved when decreasing the internal width of the waveguide and the silicon thickness in the cladding region. It is also observed that a reduction of the internal width does not undermine the performance of an adiabatic taper
Bulk Cr tips for scanning tunneling microscopy and spin-polarized scanning tunneling microscopy
A simple, reliable method for preparation of bulk Cr tips for Scanning
Tunneling Microscopy (STM) is proposed and its potentialities in performing
high-quality and high-resolution STM and Spin Polarized-STM (SP-STM) are
investigated. Cr tips show atomic resolution on ordered surfaces. Contrary to
what happens with conventional W tips, rest atoms of the Si(111)-7x7
reconstruction can be routinely observed, probably due to a different
electronic structure of the tip apex. SP-STM measurements of the Cr(001)
surface showing magnetic contrast are reported. Our results reveal that the
peculiar properties of these tips can be suited in a number of STM experimental
situations
Two-dimensional TiOx nanostructures on Au(111): a Scanning Tunneling Microscopy and Spectroscopy investigation
We investigated the growth of titanium oxide two-dimensional (2D) nanostructures on Au(111), produced by Ti evaporation and post-deposition oxidation. Scanning tunneling microscopy and spectroscopy (STM and STS) and low-energy electron diffraction (LEED) measurements characterized the morphological, structural and electronic properties of the observed structures. Five distinct TiOx phases were identified: the honeycomb and pinwheel phases appear as monolayer films wetting the gold surface, while nanocrystallites of the triangular, row and needle phases grow mainly over the honeycomb or pinwheel layers. Density Functional Theory (DFT) investigation of the honeycomb structure supports a (2 x 2) structural model based on a Ti-O bilayer having Ti2O3 stoichiometry. The pinwheel phase was observed to evolve, for increasing coverage, from single triangular crystallites to a well-ordered film forming a (4*sqrt(7) x 4*sqrt(7))R19.1° superstructure, which can be interpreted within a moire-like model. Structural characteristics of the other three phases were disclosed from the analysis of high-resolution STM measurements. STS measurements revealed a partial metallization of honeycomb and pinwheel and a semiconducting character of row and triangular phases
Co-optimizing grating couplers for hybrid integration of InP and SOI photonic platforms
Grating couplers are widely used optical interfaces in integrated photonics, especially on the Silicon-On-Insulator (SOI) platform. Their design has been optimized for coupling light between a Photonic Integrated Circuit (PIC) and a single-mode fiber, a ÎŒlens for free space transport, or even a second PIC in the same SOI platform. In this work, we co-design matching pairs of grating-couplers on distinct SOI and InP photonic platforms for optimized PIC-to-PIC coupling. By matching the scattering strengths of the two grating-couplers, we show that a PIC-to-PIC insertion loss of 3dB can be achieved. We also investigate how the design parameters impact the coupling efficiency and the bandwidth, ending up with a tolerance analysis. The proposed coupling approach between two different waveguide materials has prospective applications for the hybrid-integration of SOI and InP photonic platforms for communication technologies.Grating couplers are widely used optical interfaces in integrated photonics, especially on the Silicon-On-Insulator (SOI) platform. Their design has been optimized for coupling light between a Photonic Integrated Circuit (PIC) and a single-mode fiber, a ÎŒlens for free space transport, or even a second PIC in the same SOI platform. In this work, we co-design matching pairs of grating-couplers on distinct SOI and InP photonic platforms for optimized PIC-to-PIC coupling. By matching the scattering strengths of the two grating-couplers, we show that a PIC-to-PIC insertion loss of 3dB can be achieved. We also investigate how the design parameters impact the coupling efficiency and the bandwidth, ending up with a tolerance analysis. The proposed coupling approach between two different waveguide materials has prospective applications for the hybrid-integration of SOI and InP photonic platforms for communication technologies
SĂndrome purpĂșrico-papular em "luvas e meias" por parvovĂrus B19: relato de caso
We present a case of papular-purpuric "gloves and socks" syndrome (PPGSS) in an adult male with acute parvovirus B19 infection. The patient displayed the classical features of fever, oral lesions, and purpura on hands and feet, but the purpuric lesions on the feet evolved to superficial skin necrosis, a feature not previously described in this syndrome. We believe this is the first reported case of PPGSS occurring in Brazil.Um caso de sĂndrome purpĂșrico-papular em "luvas e meias" devido Ă infecção aguda por parvovĂrus B19 Ă© descrito em um homem adulto que, alĂ©m das manifestaçÔes clĂĄssicas de febre, lesĂ”es orais e pĂșrpura em mĂŁos e pĂ©s, evoluiu com icterĂcia e necrose cutĂąnea superficial dos pĂ©s, caracterĂsticas atĂ© entĂŁo nĂŁo descritas nesta sĂndrome. Acreditamos tratar-se do primeiro caso descrito no Brasil
Three-dimensional approach to scanning tunneling spectroscopy and application to Shockley states
The problem of the interpretation of scanning tunneling spectroscopy (STS) data is analytically solved using a three-dimensional (3D) transfer Hamiltonian approach. We present an analytical model capable of including both the electronic structure of the sample and the symmetry of the tip states (s, pz, dz2,â...) and we discuss the role of these 3D aspects in tunneling. We applied this model to the case of Shockley states. This system, allowing a full analytical treatment, led us to a detailed simulation and comprehension of the tunneling process. A procedure for the recovery of the sample local density of states from STS measurements is then proposed and applied to both the simulated and the experimental STS data of Shockley states. Comparing this approach with other methods proposed in the literature, the importance of considering the 3D aspects in treating and interpreting STS data is demonstrated
- âŠ