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Abstract. The problem of the interpretation of scanning tunneling spec-
troscopy (STS) data is analytically solved using a three-dimensional (3D) trans-
fer Hamiltonian approach. We present an analytical model capable of including
both the electronic structure of the sample and the symmetry of the tip states
(s, pz, dz2 , . . . ) and we discuss the role of these 3D aspects in tunneling. We
applied this model to the case of Shockley states. This system, allowing a full
analytical treatment, led us to a detailed simulation and comprehension of the
tunneling process. A procedure for the recovery of the sample local density of
states from STS measurements is then proposed and applied to both the simu-
lated and the experimental STS data of Shockley states. Comparing this approach
with other methods proposed in the literature, the importance of considering the
3D aspects in treating and interpreting STS data is demonstrated.
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1. Introduction

The investigation of the local, surface-projected electron density of states (DOS) at the
nanometric scale and the possibility of accessing both the occupied and the unoccupied states
are two of the most attractive features of scanning tunneling spectroscopy (STS) [1]. Over the
last few years, different approaches have been followed to solve the challenging problem of
interpreting the raw STS quantities and connecting them to the physical properties of surfaces.

The tunneling current is the result of a non-equilibrium process taking place on a surface
in the presence of a tip (with a given electronic structure), and its general relationship with
the surface DOS is indeed quite complicated. In principle, making use of the theory of the
non-equilibrium Green’s function [2], a full computational approach can be developed to
simulate the process [3]. Various attempts for more simplified treatments exist. One of the
most successful approaches consists in describing the tunneling in the one-dimensional (1D)
Wentzel–Kramer–Brillouin (WKB) approximation. From the earliest works [4], it has been clear
that both the tunneling current I and, in a more direct way, the differential conductivity dI/dV
provide information on the electron DOS of the surface. However, such quantities generally
contain other spurious contributions due both to the presence of the tip and to the tunneling
process itself. As a consequence, the identification of dI/dV as a function of the applied
bias V with the surface DOS is valid only in a short-energy range around the Fermi level.
Stroscio et al [5] proposed to normalize the differential conductivity to the total conductivity
(dI/dV )/(I/V ) to qualitatively remove the tunneling process contribution. Ukraintsev [6]
proposed a more consistent normalization procedure based on the analytical evaluation of
the 1D-WKB transmission coefficient of the tunneling barrier. A more refined treatment was
provided by Koslowski et al [7], who proposed an analytical normalization procedure based
on a suitable combination of dI/dV and I , to quantitatively recover the surface DOS. The
possibility of recovering the sample DOS by solving iteratively the corresponding Volterra
equation of the second kind in the Neumann scheme was also suggested [7]. Wagner et al [8]
directly approached the same problem numerically inverting the integral relation between the
sample DOS and I (which is a Volterra equation of the first kind) and applied it to the case
of organic molecule spectra, neglecting possible tip effects. Passoni et al [9] evaluated the
effectiveness of these methods on experimental data and considered the effect of the presence of
a non-constant tip DOS in dI/dV spectra. The possibility of removing such tip effects has also
been demonstrated in principle, exploiting iterative solution methods [10, 11]. Finally, Ziegler
et al [12] proposed a method to treat and interpret the spectra taken by varying the tip–sample
distance in the so-called constant current mode. One of the most attractive features of the
1D-WKB approach is that it ‘bypasses’ the non-equilibrium situation, connecting in a simple
and direct way measured quantities with physical properties. On the other hand, several
important aspects cannot be treated within the 1D-WKB approximation. In particular, 3D effects
have been included in the WKB framework considering the problem of tunneling through a 3D
extended tunneling barrier only within the zero bias approximation [13], while the contributions
of a non-vanishing applied bias, of electron states located in different regions of the sample
Brillouin zone and of the symmetry of the tip states cannot be easily included. As a consequence,
a 3D-WKB theory suitable for STS is not available yet.

In a different framework, the theory of tunneling can be treated within the so-called transfer
Hamiltonian (TH) approach, as was originally done by Bardeen [14]. This approach, within
its limits of validity [15], opens the possibility for an analytical treatment of the 3D effects.
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From a historical point of view, these aspects were included in scanning tunneling microscopy
(STM) descriptions first by Tersoff and Hamann [16] and then by Chen [17–19], in the low
bias approximation, with the purpose of explaining the origin of atomic resolution in STM. The
extension of this model to finite bias has been recently proposed with the aim of providing a
solid theoretical framework for the interpretation of STS measurements [20].

We followed the possibilities offered by this approach to present a complete 3D analytical
model of tunneling and a specific STS normalization procedure, applied in particular to the
physical system consisting of Shockley states with a parabolic dispersion in the presence of a tip
state with well-defined angular symmetry. In section 2, we present the analytical description of
the tunneling process in a 3D-TH approach, providing an expression for I and dI/dV that is able
to take into account both the band structure of the sample surface states and the tip state angular
symmetry. In section 3, we consider the case of an ideal Shockley surface state as a sample in the
STS measurement, showing 3D-related features in simulated tunneling current. The presented
analytical formulation is exploited in section 4, where we propose a normalization procedure
for the recovery of the sample local density of states (LDOS). The normalization method is
applied to the simulated Shockley state spectra and compared with existing procedures [5–7].
The reliability of the method is also evaluated by testing sensitivity to the model parameters
(e.g. estimated tip–sample distance and tip symmetry) and eventually applying the method to
experimental STS spectra taken on Cu(111). The concluding remarks are presented in section 5.

2. Theory

We start by summarizing the formulation of the tunneling problem in the TH approximation.
Under the quite general assumptions of independent electrons for both the sample and the tip
and of weak coupling between the two physical systems, we can define the LDOS ρS(T)(E)=∑

γ δ(E − Eγ ) and the LDOS LS(T)(E, r)=
∑

γ |ψγ (r)|2δ(E − Eγ ), where Eγ and ψγ are the
γ th eigenvalue and eigenfunction of the unperturbed single-electron Hamiltonian, respectively.
In the following, we will use the notation γ → µ for the tip states and γ → ν for the sample
states. In the 1D treatment, a difference between LDOS and DOS does not explicitly appear
and these two quantities are used almost equivalently. On the other hand, they have to be
distinguished whenever we consider a real 3D system. One of the most attractive features of
the 1D-WKB approximation is that it leads to a formulation of the tunneling current in the form
of a convolution integral of tip and sample DOSs, weighted by the WKB tunneling transmission
coefficient [21]. Such an expression is achieved after several simplifying assumptions and it is
not valid in the general case, as we will show in the following. The TH formulation for the
tunneling current in the zero-temperature, elastic regime [14, 22], using dimensionless units
(E/WF → E , eV/WF → V and z

√
2meWF/h̄ → z, where V is the applied voltage, WF is the

effective work function and e, me are the modulus of electron charge and mass, respectively), is
given by

I =

∫ V

0

∑
µ,ν

|Mν,µ|
2δ(E − V − Eµ)δ(E − Eν) dE . (1)

Here, the probability of a transition between the sample state with the energy Eν = E and the
tip state with the energy Eµ = E − V is described by means of the Fermi golden rule through
the matrix elements Mν,µ, which depend on the corresponding wave functions ψµ, ψν [14].
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In the general situation, the evaluation of Mν,µ in (1) does not lead to a simple connection
between the current and the sample DOS or LDOS [15, 20]. If we expand the tip wave functions
into spherical harmonics [18], it is possible to write these matrix elements in the general
form [20]

Mν,µ = Ôµ(E, V )ψν(r0, E, V ), (2)

where r0 is the center of curvature of the tip apex and Ôµ(E, V ) is a differential operator that
acts on the spatial coordinates of the sample wave functions ψν and depends on both the tip
properties and the applied finite bias. If we assume that

(a) the sample wave functions are the solutions of a Schrödinger equation that is separable into
Cartesian coordinates (x , y for the in-plane parallel (‖) directions, which are associated
with an eigenvalue E‖, and z for the out-of-plane orthogonal (⊥) direction, which is
associated with an eigenvalue Ez = E − E‖).

(b) The potential barrier between the two systems can be well approximated by a (bias-
dependent) effective rectangular barrier of height equal to WF + V/2;

we can express the sample wave function in the vacuum region in the form

ψν(r, E, V )= Aν‖(x, y; E, V )χν⊥(Ez, V, z)

= Aν‖(x, y; E, V )Cν⊥(Ez, V ) e−ks(Ez,V )z, (3)

where Aν‖
(x, y) and χν⊥

(Ez, V, z) are the eigenfunctions for the parallel and perpendicular
equations which depend on the quantum numbers ν⊥ and ν‖, respectively; kS =

√
1 + V/2 − Ez

is the decay factor for the sample state in vacuum and Cν⊥
(Ez, V ) is a normalization parameter.

Although for some special cases such a parameter could be calculated, its dependence on V is
in general not known and some assumptions are therefore needed. Here, we neglect the quantity
∂|Cν⊥

|
2/∂V and assume that the electric field affects only the out-of-plane component of the

eigenfunction; we can write

ψν(r, E, V )≈ ψν(r‖, z = 0, E, V = 0) e−ks(Ez,V )z. (4)

Let us now consider, in the spherical harmonics expansion, the tip states s, pz and dz2 that
are generally responsible for the main contribution to the tunneling current [18]. The matrix
elements (2) corresponding to these states contain differential operators acting only on the
z-coordinate and can be expressed in the functional form [20]

Mν,µ = Mν,lm = αlm (E, Ez, V )ψν(r0, E, V ), (5)

where l and m are the quantum numbers related to the tip spherical harmonics expansion and
αlm (E, Ez, V ) depends on the particular tip state

αs =
4πas

kT(E, V )
, (6)

αpz =
4πapz

kT(E, V )
·

kS(Ez, V )

kT(E, V )
, (7)

αdz2 =
4πadz2

kT(E, V )
·

[
k2

S(Ez, V )

k2
T(E, V )

−
1

3

]
. (8)
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Here, kT(E, V )=
√

1 + V/2 − E is the decay constant for the tip wave functions and as ,
apz , ad z2 are constants related to the relative weight of the corresponding lm state in the spherical
harmonics expansion. Now, introducing the lm-partial tip DOS ρT,lm , obtained by summing
over the tip states with the symmetry lm , we can rewrite the tunneling current as a sum of
contributions Ilm coming from each tip state symmetry lm = s, pz, dz2:

I =

∑
lm

Ilm

=

∑
lm

∫ V

0
ρT,lm (E − V )

∑
ν

α2
lm

|ψν(r0, E, V )|2δ(Eν − E) dE . (9)

Equation (9) can be expressed in a more transparent form by introducing the partial sample
LDOS LS,ν(E, r0)= |ψν(r0)|

2δ(E − Eν), so that

I =

∑
lm

∫ V

0
ρT,lm (E − V )

∑
ν

α2
lm

LS,ν(E, V, r0) dE . (10)

In (10), the tunneling current is expressed as an integral including LS,ν evaluated at the center
of curvature of the tip apex. Usually, it is more interesting to consider this quantity evaluated at
the sample surface. Making use of (4), it follows that

LS,ν(E, V, r0)≈ LS,ν(E, V = 0, r‖, z = 0) e−2ks(Ez,V )z ≡ LS,ν(E, r‖) e−2ks(Ez,V )z, (11)

identifying in this way the sample perturbed partial LDOS in vacuum as a product of an
unperturbed partial LDOSs LS,ν(E, r‖) evaluated at the surface and a tunneling decay function
that depends on the bias and the tip–sample distance. This allows us to write (10) as

I =

∑
lm

∫ V

0
ρT,lm (E − V )

∑
ν

τlm (E, Ez, V, z)LS,ν(E, r‖) dE, (12)

where we introduce the function

τlm (E, Ez, V, z)= α2
lm
(E, Ez, V ) e−2ks(Ez,V )z. (13)

Equation (12) shows a number of similarities to the common 1D-WKB formula. It relates
the tunneling current to the tip DOS and sample unperturbed partial LDOSs, each weighted by
a generalized transmission coefficient τlm . However, even though (12) has the same structure
as that of the 1D formulation of the tunneling current, τlm here depends not only on the total
energy E of the surface states and the tip–sample distance z, but also on the out-of-plane energy
Ez and the symmetry of the tip apex lm , in this way including the relevant 3D features of the
tunneling process. Comparing with the 1D-WKB transmission coefficient [8], τlm still depends
exponentially on z and V . However, the exponential term contains only the Ez energy instead
of E , which is the physical quantity contributing to the decaying behavior in vacuum of ψν
[16, 23]. Moreover, the 1D coefficient T does not contain the term α2

lm
, which arises naturally

in this TH formulation and allows us to include the assumed symmetry of the orbitals at the tip
apex.

Since the αlm coefficients are functions of V , E and Ez, τlm always differs from the
1D-WKB transmission coefficient. It is therefore important to understand how the transmission
coefficients τlm depend on the relevant quantities, in particular on the out-of-plane sample energy
Ez (see figure 1(a)). In figure 1(a), the total energy is fixed at a certain positive value, equal to
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Figure 1. Plots of (a) τlm and (b) α2
lm

as a function of Ez (lm = s, pz, dz2; z = 10 Å;
V = 2 V; E = 2 eV).

the applied voltage (E = V ), and the behavior of τlm as a function of Ez is shown. The out-of-
plane energy Ez cannot overcome the total energy E and Ez = E corresponds to a condition for
which the in-plane motion energy is zero (i.e. the 0̄ point in the projected Brillouin zone). It can
be observed that the transmission coefficient is overwhelmed by the exponential decay factor
e−2ksz that strongly damps the tunneling probability of the states with low Ez (the ones that lie far
away from the 0̄ point) [23]. However, even though this effect is the dominant one, differences
are visible when we compare the behavior of τlm associated with different tip states. Looking
at the functions α2

lm
in figure 1(b), it is clear that for pz and dz2 states the tunneling probability

is enhanced for surface states with lower Ez or in other words, for surface states far from the
0̄ point, the probability does not depend on Ez for s tip states. Furthermore, the transmission
probability is always enhanced for the pz states with respect to the s states, whereas the dz2

states damp the contribution when approaching 0̄. Therefore, considering sample states with
the same total energy, the tunneling is indeed dominated by those that are closer to the 0̄ point,
but the symmetry of the tip state in general modulates the contributions of states belonging to
different regions of the Brillouin zone. This aspect has to be properly considered when facing
the issue of quantitatively extracting the sample LDOS from STS experiments.

We now consider the form of dI/dV , which represents the most relevant quantity in STS
experiments, by directly differentiating (12):

dI

dV
=

∑
lm

dIlm

dV

=

∑
lm

ρT,lm (0)
∑
ν

τlm (E = V, Ez, V, z)LS,ν(E = V, r‖)+ Bt,lm + Bs,lm , (14)

where Bt,lm and Bs,lm are given by

Bt,lm = −

∫ V

0

∂ρT,lm (E − V )

∂E

∑
ν

τlm (E, Ez, V, z)LS,ν(E, r‖) dE . (15)

Bs,lm =

∫ V

0
ρT,lm (E − V )

[
∂

∂V

∑
ν

τlm (E, Ez, V, z)LS,ν(E, r‖)

]
dE . (16)

In (14), the first term contains the most direct information on the surface electron
properties. It represents a sum of every sample surface state having a total energy E = V
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weighted by the transmission coefficient τlm , which accounts both for the specific decaying
behavior in vacuum of the sample wave functions and for the coupling with the tip states. The
term Bt,lm (in (15)) depends on the derivative of ρT with respect to the energy and has to be
considered only when the tip DOS is non-constant [9]. Experimentally, it is common to try
to modify the tip apex electronic configuration by applying a strong voltage pulse during the
measurement to achieve a sufficiently smooth tip DOS around the Fermi level. This modus
operandi usually justifies the possibility of neglecting the contribution described in (15). In
a recent work [9], different effects due to the presence of a non-constant tip DOS have been
theoretically evaluated in the 1D framework and measured by experiments. Here, we want to
focus mainly on the role of the symmetry of the tip apex orbitals in tunneling, and we will not
further consider the effects due to its energetic structure, thus neglecting the term Bt,lm in the
following, leaving this for future work.

The term Bs,lm (in (16)) involves a sum containing the derivative of the transmission
coefficient τlm , given by the following relations,

∂τlm

∂V
= [βlm ,ν(E, V )+ γν(E, V, z)]τ̄lm , (17)

where

βs,ν = −
1

2kT
, βpz,ν =

1

2k2
S

−
1

k2
T

, βdz2 ,ν =
7 − 9k2

S/k2
T

6k2
S − 2k2

T

, γν = −
z

2kS
, (18)

and consequently, by applying the mean value theorem [7] it is possible to write

Bs,lm =

∑
ν

(β̄ lm ,ν + γ̄ν)
∫ V

0
ρT,lm (E − V )τlm (E, Ez, V, z)LS,ν(E, r‖) dE

=

∑
ν

(β̄ lm ,ν + γ̄ν)Ilm ,ν. (19)

The terms β̄ lm ,ν and γ̄ν can be calculated for the case of constant tip and sample DOS by
following the approaches proposed in the literature [7, 9]. The term Bs,lm has therefore been
decomposed into a weighted sum of partial currents Ilm ,ν , which represent the contributions to
the total current of each sample state ν, tunneling into the tip state with the symmetry lm . It
is a smooth term representing a background contribution to dI/dV , which has to be properly
considered for a quantitative recovery of the surface LDOS, as will be discussed in section 4.

In (10)–(14), a simple dependence of I on the total sample LDOS is by no means evident.
In order to obtain a very clear connection between the tunneling current and the sample LDOS,
we introduce a further assumption:∑
ν

τlm (E, Ez, V, z)LS,ν(E, r‖)≈ τ̄lm (E, V, z)
∑
ν

LS(E, r‖)= τ̄lm LS(E, r‖). (20)

The tunneling current I in (12) thus explicitly contains the term of interest LS(E, r‖):

I ≈

∑
lm

∫ V

0
ρT,lm (E − V )τ̄lm (E, V, z)LS(E, r‖) dE, (21)
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and consequently, (14) becomes

dI

dV
=

∑
lm

dIlm

dV

= LS(E = V, r‖)
∑

lm

ρT,lm (0)τ̄lm (E = V, V, z)+
∑

lm

Bs,lm , (22)

where Bs,lm in (16), under condition (20), becomes

Bs,lm =

∑
ν

(β̄ lm ,ν + γ̄ν)Ilm ,ν ≈ (β̄ lm + γ̄ )Ilm . (23)

Equation (22) now directly contains information on the sample LDOS LS at the energy
E = V . LS is multiplied by the generalized transmission coefficient τ̄lm , evaluated at E = V and
superposed on the background term Bs,lm .

The assumption expressed in (20) is thus pointing to the possibility of a simplified
analytical treatment and it is worthwhile to understand the conditions under which it holds.
Looking at (6)–(8) and (13), we see that (20) is rigorously correct only if all the states described
in the system have the same constant out-of-plane energy Ez, which can occur in several cases
of physical interest (see section 3). In the general case, the energy Ez = E − E‖ is different for
different sample states. Consequently, the contribution of each sample state to the tunneling
current cannot be simplified by considering only the quantity LS(E), and (12) has to be
evaluated considering the full band structure of the investigated system.

If the sample electronic structure is in some way known (e.g. by means of ab initio
calculations or analytical modeling), it is possible to use (9) or (10) to simulate an STS
measurement depending on the assumed symmetry of the tip apex orbitals. This approach will
be presented in section 3. On the other hand, if one is interested in recovering the surface LDOS
from experimental STS data, (21) and (22) can be used for this purpose, as will be shown in
section 4.

3. Tunneling spectroscopy of Shockley states

To provide an example of physical interest, we consider the case of noble metal surfaces such as
Cu(111) and Au(111), which are characterized by a surface state confined in a few monolayers
from the surface termination [24]. The presence of a projected gap at 0̄ produces a weak
interaction between the surface and the bulk states [25] and, in these conditions, the surface
states are well described by an ideal 2D free-electron gas regarding the in-plane motion. The
possibility of treating the electronic properties of this system using an analytical formulation
makes it a good candidate for applying the theoretical approach presented in section 2 and
simulating the results of an STS measurement. For this system, a parabolic relation between
energy and momentum is expected; neglecting all the deviations that affect the real system, we
express such a relation in the form

E = ES +
|k‖|

2

2m∗
, (24)

where ES is the bottom energy of the parabolic band (for Au and Cu, this value is estimated
to be 460 and 430 meV below EF [26, 27]), respectively, k‖ is the momentum related to the
in-plane motion and m∗ is the electron effective mass of the state (0.23 and 0.39 me for
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Figure 2. Simulated LDOS of a Shockley surface state with ES = 0.42 eV as a
function of E (z = 0, distance from the ideal step x = 46 Å).

Au and Cu, respectively [26, 27]). It is worth noting that the out-of-plane component of the
energy Ez does not depend on the momentum in this case, so that Ez = ES for every k‖. For
this system, the use of (20)–(21) is then fully justified. The DOS is obtained by integrating
over the momentum space. For a full 2D translational symmetry, a step function with the
discontinuity placed at E = ES is obtained. In STS, this step is usually visible as a jump in
dI/dV signal for V = ES [25–27]. In the presence of a scattering center like point defects or
steps, the translational symmetry is partially broken (scattering sites interact with the electrons
of the surface and generate the well-known phenomenon of standing waves [28]) and the proper
physical quantity to be considered is the LDOS instead of the DOS. The LDOS is modulated
both in space and in energy, as can be observed routinely in low-temperature STM experiments.

In order to include such effects, we describe a model system of a 2D Shockley state, with
an ideal step barrier along the x-direction. In this configuration, the eigenfunctions of the system
are [29]

ψν = gkx (x)hky(y)χ(z), (25)

where

gkx (x)= L−1/2 sin(kx x); hky(y)= L−1/2 eiky y
; χ(z)= Ce−kSz,

and k2
x + k2

y = k2
‖
. The corresponding LDOS is

LS(E, x)=
m∗

4π
|C |

2 e−2kS(ES)z
[
1 − J0(2

√
E − ESx)

]
. (26)

The oscillations of the LDOS in energy are then described by the Bessel function J0 (see
figure 2).

We apply the tunneling theory described in section 2 to this system to perform a full
analytical simulation of the tunneling current. Simulated I –V characteristics at typical tunneling
parameters are shown in figure 3(a), considering the cases of s, pz and dz2 tip states. As the
common behavior of all these curves, the absolute value of the tunneling current is larger in
the negative bias region, whereas in the positive region it approaches a zero slope limit. Due to
the integral nature of the current, we can observe only a very weak contribution coming from the
oscillations of the LDOS. In figure 3(b), dI/dV curves are shown; we immediately recognize
the two basic features of the model sample LDOS, namely the edge at the bias V = ES and
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figure 2 as a function of V (lm = s, pz, dz2; z = 7.36 Å). (c) The transmission
coefficient τ̄lm (E, V )|E=V as a function of V . The WKB transmission coefficient
T (E, V )|E=V is shown for reference.

the oscillations in energy. The simulated dI/dV s agree well with typical experimental data on
Shockley surfaces, such as that in figure 6 acquired on Cu(111), in particular regarding the
monotonically decreasing behavior and the sharp onset. The maxima of these oscillations in the
dI/dV curves are close to the LS ones but a shift towards lower energy is present. In this sense,
our simulation supports the well-known problems in extracting physical quantities of the sample
directly from the dI/dV data, without further treatment. More precisely, we want to point out
that the shape of the dI/dV is both qualitatively and quantitatively different from that of the
sample LDOS. From a comparison of figures 2 and 3(b), we can see that (i) the differential
conductivity shows a decreasing background distortion and it can even become negative after a
certain value of the bias (figure 3(b)), and (ii) for negative biases, dI/dV continuously increases
even where the LDOS evaluated for E = V is zero. Furthermore, the behavior of dI/dV is
affected in a non-obvious way by the symmetry of the tip apex orbitals.

In order to better understand the origin of these spurious contributions, we now interpret
the shape of the dI/dV curves in the light of (22). Let us consider the decreasing behavior of the
dI/dV signal. This effect can be usually ascribed to the energy behavior of the tunneling barrier
and has been exhaustively explained in the framework of 1D-WKB theory [8, 9]. However,
in the case of Shockley states, this effect is not expected simulating the tunneling using a 1D
model [7], so that for this specific case its origin has to be ascribed to the 3D features included
in the transmission coefficient. In order to elucidate this point, the quantity τ̄lm (E, V, Ez, z)|E=V

is shown in figure 3(c) as a function of V for a constant Ez. We can see that in any case it
shows completely different behavior compared with the 1D-WKB transmission coefficient [6].
For the Shockley states, the tunneling probability decreases when the applied bias increases.
This is due to the fact that each state with a total energy E has a fixed out-of-plane energy
Ez, and increasing the applied voltage only has the effect of increasing the barrier height,
which determines the observed decrease in the transmission coefficient and the damping of the
differential conductivity. On the other hand, for the general case of surface or surface-projected
states, it is likely that a higher total energy E results in a higher out-of-plane energy Ez and
a higher tunneling probability. Therefore, increasing the applied voltage not only increases
the barrier height but also allows tunneling among states with a higher energy and tunneling
probability; thus the resulting voltage behavior is the opposite.
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Equation (22) is also helpful in understanding why we observe a non-vanishing dI/dV
below the edge of the Shockley state. If we consider the term Bs,lm of this expression, we see
that it is proportional to the tunneling current, which, being non-vanishing at negative biases,
provides a finite contribution also in the energetic interval in which the surface has no states.

We now want to highlight the effect of the symmetry of the tip apex orbitals. From
figure 3(b), we see that the s, pz and dz2 tip symmetries generate three different dI/dV curves
with different amplitudes. In particular, the s and pz cases are very similar, whereas for dz2 the
amplitude of dI/dV is reduced. The differences in their amplitude can be once again understood
by looking at the behavior of τ̄lm in figure 3(c). The effect of the tip apex orbital symmetry is
contained in τ̄lm , which depends on the tunneling matrix elements. Since the coefficient τd z2

is always smaller than the other two coefficients, this results in decreased values of tunneling
current and differential conductivity for the dz2 states, as visible in figure 3(b). To summarize
the previous discussion, we observed that the main features of the Shockley state can be directly
understood by looking at the dI/dV curve. However, various spurious contributions from the
tunneling process arise and they have to be properly removed for a quantitative recovery of the
sample LDOS.

4. Recovery of the sample local density of states

Let us now discuss the crucial topic of how to extract quantitative information on the sample
LDOS from the tunneling current. If the tunneling is dominated by one tip state symmetry in
the energy range of interest (Ilm ≡ I ), an explicit expression for the sample LDOS in terms of
experimental and modeling parameters can be obtained combining (22) and (23) for systems
satisfying the conditions (20):

LS(E = V )=

[
dI

dV
− (β̄ lm + γ̄ )I

]
·

1

ρT,lm (0)τ̄lm (E = V, V, z)
. (27)

Equation (27) is expressed in terms of the tunneling current I , in a similar way to that
suggested by Koslowski et al in the 1D case [7]. The parameters β̄ lm and γ̄ are functions of V .
Equation (27) represents an explicit expression to obtain the sample LDOS as a function of the
measured quantities dI/dV and I and simple analytical functions. In the general case, we may
expect that more than one tip state contributes to the tunneling, so that the terms ρT,lm , τ̄lm and
β̄ lm should consequently be substituted by proper mean quantities. However, the assumption of
one symmetry tunneling represents a simple and usually the best solution from a practical point
of view.

We are therefore led to evaluate the effectiveness of (27) on the physical system discussed
in section 3. For this purpose, a comparison of (27) with the normalization methods proposed
in the literature by Stroscio et al [5], Ukraintsev [6] and Koslowski et al [7] will be presented
below, followed by an analysis of the sensitivity to the modeling parameters (i.e. tip–sample
distance z and tip orbital symmetry lm). Then, (27) will be also applied to experimental data
acquired regarding Cu(111). In these investigations, both the presented method and those from
the literature have been applied to the I and dI/dV curves simulated in the case of the s tip.
Except normalization to total conductivity I/V , all these methods require an estimate of the
tunneling parameters such as tip–sample distance and effective work-function [9]. For the sake
of simplicity, here these parameters have been directly taken from the simulations. As far as the
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Koslowski method is concerned, we directly use the 3D-WKB extended method (equation (13)
of [7]), specifically suited for the Shockley state system.

The comparison is shown in figure 4. All the previous methods preserve an overall
background distortion represented by a negative slope in all the recovered spectra. This
distortion also affects the positions of the maxima of the oscillation in the spectra, producing
a shift towards lower energy values. Moreover, some other shape distortions are visible in the
spectra normalized using the total conductivity method and the Ukraintsev method. To explain
such effects, we can observe that these procedures have been developed in a 1D framework,
while this peculiar system presents important features that can be taken into account only in
a 3D treatment. Even using Koslowski normalization, which is a 3D-WKB extension of the
corresponding 1D-WKB method, it is not possible to completely remove the overall distortion,
mainly because a proper inclusion of the tunneling matrix elements between the sample and the
tip is missing. From figure 4, it is clear that the best result is achieved by applying (27).

The proposed method is also capable of properly removing the effects of different tip states.
In figure 5(a), we show the results of applying (27) to the three dI/dV and I obtained by
simulating the tunneling through the s, pz and dz2 tip states making use of the corresponding β, γ
and τ functions. Even though, below the Shockley edge, the recovered curves show some small
differences, all three normalized curves are coincident above this edge and in full agreement
with the sample LDOS, thus showing the capability of the procedure to remove the influence of
tip apex orbitals symmetry and achieve the correct result.
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Figure 5. Recovered LS obtained using (27) on: (a) simulated STS data (lm =

s, pz, dz2 , z = 10 Å), assuming the correct tip state and tip–sample distance,
(b) simulated STS data (lm = pz, z = 10 Å), assuming lm = s, pz and dz2 and
the correct tip–sample distance, (c) simulated STS data (lm = s, z = 10 Å),
assuming the correct tip state but z = 9, 10, 11 Å, (d) simulated STS data (lm = s,
z = 10 Å), assuming different parameter sets (lm = s and z = 10 Å; lm = pz and
z = 11 Å; lm = dz2 and z = 13 Å).

It might appear that the applicability of this method relies on a detailed knowledge of the
tip apex orbital symmetry and the tip–sample distance, which are often not achievable from
a practical point of view. In order to evaluate possible errors introduced by wrong estimates
of these experimental parameters, we consider the behavior of the proposed procedure when
a ‘wrong’ estimated tip state is used, as shown in figure 5(b). Here, a recovered dI/dV curve
related to a pz state tip is shown, together with the application of (27) also assuming other tip
symmetries. Some background distortion can be introduced if the tip apex orbital symmetry
differs from that responsible for the tunneling process, but such an effect is anyhow clearly less
pronounced when compared to that obtained using conventional 1D methods. In other words,
it is better to normalize using (27) with a trial matrix element (possibly, even an incorrect
one) instead of applying a method that does not consider the tip apex symmetry at all. We
similarly consider the problem of a wrong estimation of the tip–sample distance. In figure 5(c),
the dI/dV curve is simulated by considering an s state tip located 10 Å from the surface, and
(27) was applied using three different estimated distances. Once again, the overall effect of
using a wrong parameter is a background distortion, particularly visible in the change of slope
of the recovered LDOS at voltages above the surface state onset. Since both the tip state and the
tip–sample distance parameters act in a similar way on the background of the recovered spectra,
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Figure 6. (a) Experimental dI/dV and (b) I curves taken using a Cr bulk tip
on Cu(111). Set point: I = 2 nA, V = 0.5 V. Distance from the edge: 42 Å.
(c) Recovered LS obtained by using (27), assuming lm = s and z = 10 Å. Gray
area corresponds to the reference region (see text for details).

it might be possible to obtain similar results by applying (27) using different combinations of
estimated parameters. As an example of this, we show in figure 5(d) the results of applying (27)
to the simulated STS curve with lm = s and z = 10 Å using both the correct parameters and two
different combinations of estimated lm and z, namely lm = pz, z = 11 Å and lm = dz2 , z = 13 Å.
In all these three cases, the shape of the recovered LDOS is very close to that of the ideal surface
LDOS (see figure 2 for a comparison), and only small errors are introduced because of using
the improper set of parameters.

We now conclude this section by applying the procedure to experimental STS data acquired
regarding the Cu(111) surface. Measurements were made at 7 K using an Omicron low-
temperature STM on a conventionally prepared Cu(111) single crystal [27] and using a bulk
Cr tip [30]. In figures 6(a) and (b) the dI/dV and I curves are presented. One can apply
(27) in order to extract the measurement parameter lm and z from the STS data. Since real
measurements may contain several sources of spurious contributions not considered in this
work (e.g. surface-projected bulk band states and non-constant tip DOS effects [9]), it is likely
that complete agreement between recovered experimental and theoretical LDOSs could not be
expected over the whole energy range of the experiments. Therefore, we focus our attention
on the energy region close to the Shockley onset, which represents the most reproducible and
reliable feature in STS measurements of this surface. We varied the set of parameters lm and
z until finding satisfactory agreement between theoretical and recovered LDOS in the range of
−0.5–0 V. Figure 6(c) shows the result achieved using lm = s and z = 10 Å. In agreement with
what was obtained on simulated spectra, a similar result can be also achieved using other sets
of parameters, such as lm = pz, z = 11 Å and lm = dz2 , z = 13 Å. Although none of these values
can be excluded a priori, we are here led to choose the s tip case as the most probable one,
being the only one which corresponds to the typical z range of 5–10 Å according to the set
point usually adopted in STS measurements for this class of surfaces [12, 31, 32]. Comparing
figures 2 and 6(a), we see two effects that do not appear in our simulated spectra outside the
reference range, namely a wide feature below the Shockley edge and an increasing background
of the recovered LDOS curve as a function of the applied voltage above +0.1 V. These features
are not due to our procedure since we found that they are stably detectable also employing
other lm values and varying z by ±2 Å. Since no sample states, neither from the surface nor
from the projected bulk band, are expected within the energy range of −0.8–0.45 eV [33],

New Journal of Physics 13 (2011) 053058 (http://www.njp.org/)

http://www.njp.org/


15

we safely attributed the feature below the Shockley onset to a non-constant tip DOS effect [9].
The rising signal above Fermi energy suggests instead a different origin, probably connected
with a change of the decaying behavior of the sample states in vacuum as a function of energy.
It is worth recalling that Cu surface states are located within the surface projected bulk band gap
below Fermi energy, whereas, with increasing momentum as a function of energy, they cross
the bulk band edge just above the Fermi level [34], losing in this way its pure surface character
and becoming instead a surface resonance [29]. As a consequence, the decaying behavior in
vacuum is partially modified by the bulk contributions and the assumption that Ez = ES is not
valid in this situation. This might therefore explain the different behavior of the recovered LS

as a function of energy with respect to pure Shockley states LDOS. It is remarkable that such
a feature is particularly evident when STS data are treated by the proposed procedure, since
(27) relies on the presence of a pure surface state and not on possible bulk band state or surface
resonances, so that possible deviations from the ideal free-electron behavior are particularly
emphasized.

The presented analysis suggests two possible ways of applying (27) to real situations. First,
one can be interested in normalizing STS spectra from unknown surfaces using some reasonable
trial parameters. In this case, we showed that it is possible to achieve a proper recovery of the
LDOS by using different sets of parameters, which makes the procedure even more reliable.
On the other hand, the proposed procedure could be applied to STS data from well-known
surfaces (such as Shockley states) with the aim of extracting tip apex orbital symmetry and
experimental parameters. This can be implemented by tentatively varying the parameters until
the recovered LDOS (or alternatively a selected part of the recovered LDOS in a certain energy
window) is very similar in shape to the ideal form of the surface LDOS. Since this result can
be achieved through more than one combination of estimated parameters, a unique set could
not be univocally found. However, it is also possible that some of the extracted parameter sets
could be excluded if some values are not physically reasonable (e.g. too short/long tip–sample
distances or unexpected tip apex symmetry for the used tip material), achieving in this way a
unique result.

5. Conclusions

In this paper, we have presented a 3D-TH model of tunneling that is capable of including both
the tip angular symmetry and the sample band structure. We found that the tunneling current can
be represented as an energy convolution between the tip DOS and the sample LDOS weighted by
an effective transmission coefficient τ . In contrast to what occurs in the 1D-WKB description,
this coefficient depends on the 3D properties of the tip and the sample, in particular on the
out-of-plane sample state energy (Ez) and the tip state angular symmetry (s, pz or dz2). On
the basis of these findings, we proposed a specific normalization procedure to properly recover
the sample LDOS from an STS measurement. We considered the case of a Shockley state,
which is analytically developed to also compare this normalization method with other relevant
existing approaches. This analysis clearly shows the importance of including the 3D effects in
the description of tunneling in order to better quantitatively recover the sample LDOS from
experimental measurements.

The presented theory shows several advantages with respect to the other 1D-WKB-based
models. First, the theory can be used to simulate the dI/dV curves starting from a theoretical
sample electronic structure in order to reveal how an STS measurement should appear. This
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would be of great help in overcoming the usual difficulties faced in comparing the ab initio
simulations of surface electronic properties with STS data. With respect to WKB theories, the
decaying behavior in vacuum of states belonging to different regions of the Brillouin zone can
now be properly considered, together with effects introduced by the tip apex orbital symmetry.
When the starting point is the experimental data, the proposed normalization procedure can
be exploited to recover (i) the sample LDOS from STS measurements assuming a constant tip
DOS or (ii) the tip apex orbital symmetry and electronic structure when STS is performed on
well-known surfaces. In principle, the presented method for the recovery of tip and sample
LDOS could also be exploited in connection with iterative methods, as proposed in the
1D-WKB framework [7, 10], e.g. by using a set of measurements taken at different tip–sample
distances [11], providing also in this case a correct inclusion of the 3D effects.
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