23 research outputs found

    Beteiligung von Angiotensin an humoralen und neurohormonalen Mechanismen der Blutdruckregulation

    No full text

    Measurement of electrons from semileptonic heavy-flavour hadron decays at midrapidity in pp and Pb–Pb collisions at √sNN = 5.02 TeV

    No full text
    The differential invariant yield as a function of transverse momentum (pT) of electrons from semileptonic heavy-flavour hadron decays was measured at midrapidity in central (0–10%), semi-central (30–50%) and peripheral (60–80%) lead–lead (Pb–Pb) collisions at √sNN = 5.02 TeV in the pT intervals 0.5–26 GeV/c (0–10% and 30–50%) and 0.5–10 GeV/c (60–80%). The production cross section in proton–proton (pp) collisions at √s = 5.02 TeV was measured as well in 0.5 < pT < 10 GeV/c and it lies close to the upper band of perturbative QCD calculation uncertainties up to pT = 5 GeV/c and close to the mean value for larger pT. The modification of the electron yield with respect to what is expected for an incoherent superposition of nucleon–nucleon collisions is evaluated by measuring the nuclear modification factor RAA. The measurement of the RAA in different centrality classes allows in-medium energy loss of charm and beauty quarks to be investigated. The RAA shows a suppression with respect to unity at intermediate pT, which increases while moving towards more central collisions. Moreover, the measured RAA is sensitive to the modification of the parton distribution functions (PDF) in nuclei, like nuclear shadowing, which causes a suppression of the heavy-quark production at low pT in heavy-ion collisions at LHC

    Transverse-momentum and event-shape dependence of D-meson flow harmonics in Pb–Pb collisions at √sNN = 5.02 TeV

    No full text
    The elliptic and triangular flow coefficients v2 and v3 of prompt D0, D+, and D∗+ mesons were measured at midrapidity (|y| < 0.8) in Pb–Pb collisions at the centre-of-mass energy per nucleon pair of √sNN = 5.02 TeV with the ALICE detector at the LHC. The D mesons were reconstructed via their hadronic decays in the transverse momentum interval 1 < pT < 36 GeV/c in central (0–10%) and semi-central (30–50%) collisions. Compared to pions, protons, and J/ψ mesons, the average D-meson vn harmonics are compatible within uncertainties with a mass hierarchy for pT 3 GeV/c, and are similar to those of charged pions for higher pT. The coupling of the charm quark to the light quarks in the underlying medium is further investigated with the application of the event-shape engineering (ESE) technique to the D-meson v2 and pT-differential yields. The D-meson v2 is correlated with average bulk elliptic flow in both central and semi-central collisions. Within the current precision, the ratios of per-event Dmeson yields in the ESE-selected and unbiased samples are found to be compatible with unity. All the measurements are found to be reasonably well described by theoretical calculations including the effects of charm-quark transport and the recombination of charm quarks with light quarks in a hydrodynamically expanding medium

    HΛ3 and H‟Λ‟3 lifetime measurement in Pb–Pb collisions at √sNN=5.02 TeV via two-body decay

    No full text
    An improved value for the lifetime of the (anti-)hypertriton has been obtained using the data sample of Pb–Pb collisions at √sNN = 5.02 TeV collected by the ALICE experiment at the LHC. The (anti-)hypertriton has been reconstructed via its charged two-body mesonic decay channel and the lifetime has been determined from an exponential fit to the dN/d(ct) spectrum. The measured value, τ = 242+34 −38 (stat.) ± 17 (syst.) ps, is compatible with representative theoretical predictions, thus contributing to the solution of the longstanding hypertriton lifetime puzzle

    Multiplicity dependence of K*(892)0 and ϕ(1020) production in pp collisions at t √s=13 TeV

    No full text
    The striking similarities that have been observed between high-multiplicity proton-proton (pp) collisions and heavy-ion collisions can be explored through multiplicity-differential measurements of identified hadrons in pp collisions. With these measurements, it is possible to study mechanisms such as collective flow that determine the shapes of hadron transverse momentum (pT) spectra, to search for possible modifications of the yields of short-lived hadronic resonances due to scattering effects in an extended hadron-gas phase, and to investigate different explanations provided by phenomenological models for enhancement of strangeness production with increasing multiplicity. In this paper, these topics are addressed through measurements of the K∗(892)0 and φ(1020) mesons at midrapidity in pp collisions at √s = 13 TeV as a function of the charged-particle multiplicity. The results include the pT spectra, pT-integrated yields, mean transverse momenta, and the ratios of the yields of these resonances to those of longer-lived hadrons. Comparisons with results from other collision systems and energies, as well as predictions from phenomenological models, are also discussed

    Multiplicity dependence of inclusive J/ψ production at midrapidity in pp collisions at √s=13 TeV

    No full text
    Measurements of the inclusive J/ψ yield as a function of charged-particle pseudorapidity density dNch/dη in pp collisions at √s = 13 TeV with ALICE at the LHC are reported. The J/ψ meson yield is measured at midrapidity (|y| < 0.9) in the dielectron channel, for events selected based on the charged-particle multiplicity at midrapidity (|η| < 1) and at forward rapidity (−3.7 < η < −1.7 and 2.8 < η < 5.1); both observables are normalized to their corresponding averages in minimum bias events. The increase of the normalized J/ψ yield with normalized dNch/dη is significantly stronger than linear and dependent on the transverse momentum. The data are compared to theoretical predictions, which describe the observed trends well, albeit not always quantitatively

    Global baryon number conservation encoded in net-proton fluctuations measured in Pb–Pb collisions at √sNN=2.76 TeV

    Get PDF
    Experimental results are presented on event-by-event net-proton fluctuation measurements in Pb–Pb collisions at √sNN=2.76 TeV, recorded by the ALICE detector at the CERN LHC. These measurements have as their ultimate goal an experimental test of Lattice QCD (LQCD) predictions on second and higher order cumulants of net-baryon distributions to search for critical behavior near the QCD phase boundary. Before confronting them with LQCD predictions, account has to be taken of correlations stemming from baryon number conservation as well as fluctuations of participating nucleons. Both effects influence the experimental measurements and are usually not considered in theoretical calculations. For the first time, it is shown that event-by-event baryon number conservation leads to subtle long-range correlations arising from very early interactions in the collisions

    Underlying Event Measurements In Pp Collisions At √s = 0:9 And 7 Tev With The Alice Experiment At The Lhc

    No full text
    2012

    Freeze-out radii extracted from three-pion cumulants in pp, p–Pb and Pb–Pb collisions at the LHC

    No full text
    In high-energy collisions, the spatio-temporal size of the particle production region can be measured using the Bose–Einstein correlations of identical bosons at low relative momentum. The source radii are typically extracted using two-pion correlations, and characterize the system at the last stage of interaction, called kinetic freeze-out. In low-multiplicity collisions, unlike in high-multiplicity collisions, two-pion correlations are substantially altered by background correlations, e.g. mini-jets. Such correlations can be suppressed using three-pion cumulant correlations. We present the first measurements of the size of the system at freeze-out extracted from three-pion cumulant correlations in pp, p–Pb and Pb–Pb collisions at the LHC with ALICE. At similar multiplicity, the invariant radii extracted in p–Pb collisions are found to be 5–15% larger than those in pp, while those in Pb–Pb are 35–55% larger than those in p–Pb. Our measurements disfavor models which incorporate substantially stronger collective expansion in p–Pb as compared to pp collisions at similar multiplicity
    corecore