76 research outputs found

    Multi-year salutary effects of windstorm and fire on river cane

    Get PDF
    Canebrakes are monodominant stands of cane (Arundinaria gigantea [Walter] Muhl.), a bamboo native to and once prominent in the southeastern USA. Canebrakes were important wildlife habitat within the bottomland hardwood forest ecosystem. They have been reduced in areal coverage by an estimated 98% since European settlement due to land conversion and the drastic alteration of disturbance regimes in their floodplain habitat. Ongoing canebrake restoration efforts are hampered by incomplete understanding of the role of natural disturbance in cane ecology. We used a large tornado blow down and multiple prescribed fires to quantify the response of cane to the sequential disturbances of windstorm and fire in the Tensas Watershed of northeastern Louisiana using number and condition of bamboo stems (culms) as response variables. We hypothesized that culms would be more abundant in burned than in unburned stands and that culm populations in burned stands would be younger than in unburned stands. In this study, conducted four years post fire, effects of both windstorm and burning were additive and beneficial. Results indicate that periodic aboveground disturbance has three salutary effects on cane ramet demography: 1) clonal growth following disturbances more than compensates for any culms killed; 2) the cohort of new culms is younger than the culms they replace; and 3) disturbance appears to inoculate some cane stands for several years against local die-offs. Fire is a valuable tool for canebrake management. By periodically resetting cane stands, fires and other disturbances may have played a key role in canebrake formation and persistence over time

    Groundcover community assembly in high-diversity pine savannas: seed arrival and fire-generated environmental filtering

    Get PDF
    Environmental filtering—abiotic and biotic constraints on the demographic performance of individual organisms—is a widespread mechanism of selection in communities. A given individual is “filtered out” (i.e., selectively removed) when environmental conditions or disturbances like fires preclude its survival and reproduction. Although interactions between these filters and dispersal from the regional species pool are thought to determine much about species composition locally, there have been relatively few studies of dispersal × filtering interactions in species-rich communities and fewer still where fire is also a primary selective agent. We experimentally manipulated dispersal and filtering by fire (pre-fire fuel loads and post-fire ash) in species-rich groundcover communities of the longleaf pine ecosystem. We tested four predictions: (1) That species richness would increase with biologically realistic dispersal (seed addition); (2) that the immediate effect of increased fuels in burned communities would be to decrease species richness, whereas the longer-term effects of increased fuels would be to open recruitment opportunities in the groundcover, increase species richness, and increase individual performance (growth) of immigrating species; (3) that adding ash would increase species richness; and (4) that increased dispersal would generate larger increases in species richness in plots with increased fuels compared to plots with decreased fuels. We found that dispersal interacted with complex fire-generated filtering during and after fires. Dispersal increased species richness more in burned communities with increased and decreased fuels compared to burned controls. Moreover, individuals of immigrating species generally grew to larger sizes in burned communities with increased fuels compared to burned controls. In contrast to dispersal and fuels, ash had no effect on species richness directly or in combination with other treatments. We conclude that filtering occurs both during fires and in the post-fire environment and that these influences interact with dispersal such that the consequences are only fully revealed when all are considered in combination. Our experiment highlights the importance of considering the dynamic interplay of dispersal and selection in the assembly of species-rich communities

    Does pyrogenicity protect burning plants?

    Get PDF
    Pyrogenic plants dominate many fire-prone ecosystems. Their prevalence suggests some advantage to their enhanced flammability, but researchers have had difficulty tying pyrogenicity to individual-level advantages. Based on our review, we propose that enhanced flammability in fire-prone ecosystems should protect the belowground organs and nearby propagules of certain individual plants during fires. We base this hypothesis on five points: (1) organs and propagules by which many fire-adapted plants survive fires are vulnerable to elevated soil temperatures during fires; (2) the degree to which burning plant fuels heat the soil depends mainly on residence times of fires and on fuel location relative to the soil; (3) fires and fire effects are locally heterogeneous, meaning that individual plants can affect local soil heating via their fuels; (4) how a plant burns can thus affect its fitness; and (5) in many cases, natural selection in fire-prone habitats should therefore favor plants that burn rapidly and retain fuels off the ground. We predict an advantage of enhanced flammability for plants whose fuels influence local fire characteristics and whose regenerative tissues or propagules are affected by local variation in fires. Our pyrogenicity as protection hypothesis has the potential to apply to a range of life histories. We discuss implications for ecological and evolutionary theory and suggest considerations for testing the hypothesis. © 2010 by the Ecological Society of America

    Fuels and fires influence vegetation via above- and below-ground pathways in a high-diversity plant community

    Get PDF
    1. Fire strongly influences plant populations and communities around the world, making it an important agent of plant evolution. Fire influences vegetation through multiple pathways, both above- and belowground. Few studies have yet attempted to tie these pathways together in a mechanistic way through soil heating even though the importance of soil heating for plants in fire-prone ecosystems is increasingly recognized. 2. Here we combine an experimental approach with structural equation modelling (SEM) to simultaneously examine multiple pathways through which fire might influence herbaceous vegetation. In a high-diversity longleaf pine groundcover community in Louisiana, USA, we manipulated fine-fuel biomass and monitored the resulting fires with high-resolution thermocouples placed in vertical profile above- and belowground. 3. We predicted that vegetation response to burning would be inversely related to fuel load owing to relationships among fuels, fire temperature, duration and soil heating. 4. We found that fuel manipulations altered fire properties and vegetation responses, of which soil heating proved to be a highly accurate predictor. Fire duration acting through soil heating was important for vegetation response in our SEMs, whereas fire temperature was not. 5. Our results indicate that in this herbaceous plant community, fire duration is a good predictor of soil heating and therefore of vegetation response to fire. Soil heating may be the key determinant of vegetation response to fire in ecosystems wherein plants persist by resprouting or reseeding from soil-stored propagules. 6. Synthesis. Our SEMs demonstrate how the complex pathways through which fires influence plant community structure and dynamics can be examined simultaneously. Comparative studies of these pathways across different communities will provide important insights into the ecology, evolution and conservation of fire-prone ecosystems

    Who Benefits From Teams? Comparing Workers, Supervisors, and Managers

    Get PDF
    This paper offers a political explanation for the diffusion and sustainability of team-based work systems by examining the differential outcomes of team structures for 1200 workers, supervisors, and middle managers in a large unionized telecommunications company. Regression analyses show that participation in self-managed teams is associated with significantly higher levels of perceived discretion, employment security, and satisfaction for workers and the opposite for supervisors. Middle managers who initiate team innovations report higher employment security, but otherwise are not significantly different from their counterparts who are not involved in innovations. By contrast, there are no significant outcomes for employees associated with their participation in offline problem-solving teams

    Increased Systemic Th17 Cytokines Are Associated with Diastolic Dysfunction in Children and Adolescents with Diabetic Ketoacidosis

    Get PDF
    Diastolic dysfunction suggestive of diabetic cardiomyopathy is established in children with T1DM, but its pathogenesis is not well understood. We studied the relationships of systemic inflammatory cytokines/chemokines and cardiac function in 17 children with T1DM during and after correction of diabetic ketoacidosis (DKA). Twenty seven of the 39 measured cytokines/chemokines were elevated at 6–12 hours into treatment of DKA compared to values after DKA resolution. Eight patients displayed at least one parameter of diastolic abnormality (DA) during acute DKA. Significant associations were present between nine of the cytokine/chemokine levels and the DA over time. Interestingly, four of these nine interactive cytokines (GM-CSF, G-CSF, IL-12p40, IL-17) are associated with a Th17 mediated cell response. Both the DA and CCL7 and IL-12p40, had independent associations with African American patients. Thus, we report occurrence of a systemic inflammatory response and the presence of cardiac diastolic dysfunction in a subset of young T1DM patients during acute DKA

    Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease

    Get PDF
    We identified rare coding variants associated with Alzheimer’s disease (AD) in a 3-stage case-control study of 85,133 subjects. In stage 1, 34,174 samples were genotyped using a whole-exome microarray. In stage 2, we tested associated variants (P<1×10-4) in 35,962 independent samples using de novo genotyping and imputed genotypes. In stage 3, an additional 14,997 samples were used to test the most significant stage 2 associations (P<5×10-8) using imputed genotypes. We observed 3 novel genome-wide significant (GWS) AD associated non-synonymous variants; a protective variant in PLCG2 (rs72824905/p.P522R, P=5.38×10-10, OR=0.68, MAFcases=0.0059, MAFcontrols=0.0093), a risk variant in ABI3 (rs616338/p.S209F, P=4.56×10-10, OR=1.43, MAFcases=0.011, MAFcontrols=0.008), and a novel GWS variant in TREM2 (rs143332484/p.R62H, P=1.55×10-14, OR=1.67, MAFcases=0.0143, MAFcontrols=0.0089), a known AD susceptibility gene. These protein-coding changes are in genes highly expressed in microglia and highlight an immune-related protein-protein interaction network enriched for previously identified AD risk genes. These genetic findings provide additional evidence that the microglia-mediated innate immune response contributes directly to AD development

    A difusão da doutrina da circulação do sangue: a correspondência entre William Harvey e Caspar Hofmann em maio de 1636

    Full text link
    • …
    corecore