32 research outputs found
Space Station and Space Cabin Testing
For Earth Orbiting Space Stations neither expandable, extensible, nor converted propellant tanks appear as suitable for manned operations as a specially designed cabin regardless of the mission to be performed. While an interesting possibility, use of converted propellant tanks offer little advantage when viewed in the light of the overall space station system problem.
During the past two years studies have been conducted in some depth of the cabins associated with space station systems suitable for launch by Titan III C, Saturn IB, and Saturn 5 boosters. These studies have considered various crew complements, supporting ferries f and the effects of rotation for the generation of artificial G .
Considering the requirements for integrating power supplies, thermal control* life support, attitude control, orbit propulsion, specific mission equipment, rendezvous, docking, communications, navigation, and crew creature comforts, the development of an efficient usable cabin becomes a task of significant proportions. Applying the constraints of removable and storable equipment to the fixed sizes and shapes of booster tankage makes the problem more difficult, the results less than optimum, and the increased cost substantial
Comparison of axillofemoral and aortofemoral bypass for aortoiliac occlusive disease
AbstractPurpose: A comparison of aortofemoral bypass grafting (AOFBG) and axillofemoral bypass grafting (AXFBG) for occlusive disease performed by the same surgeons during a defined interval forms the basis for this report.Methods: Data regarding all patients who underwent AOFBG or AXFBG for lower-extremity ischemia caused by aortoiliac occlusive disease were prospectively entered into a computerized vascular registry. The decision to perform AOFBG rather than AXFBG was based on assessment of surgical risk and the surgeon's preference. This report describes results for surgical morbidity, mortality, patency, limb salvage, and patient survival for procedures performed from January 1988 through December 1993.Results: We performed 108 AXFBGs and 139 AOFBGs. AXFBG patients were older (mean age, 68 years compared with 58 years for AOFBG, p < 0.001), more often had heart disease (84% compared with 38%, p < 0.001), and more often underwent surgery for limb-salvage indications (80% compared with 42%, p < 0.001). No significant differences were found in operative mortality (AXFBG, 3.4%; AOFBG, <1.0%, p = NS), but major postoperative complications occurred more frequently after AOFBG (AXFBG, 9.2%; AOFBG, 19.4%; p < 0.05). Follow-up ranged from 1 to 83 months (mean, 27 months). Five-year life-table primary patency, limb salvage, and survival rates were 74%, 89%, and 45% for AXFBG and 80%, 79%, and 72% for AOFBG, respectively. Although the patient survival rate was statistically lower with AXFBG, primary patency and limb salvage rates did not differ when compared with AOFBG.Conclusion: When reserved for high-risk patients with limited life expectancy, the patency and limb salvage results of AXFBG are equivalent to those of AOFBG. (J VASC SURG 1996;23:263-71.
A Comparison of Atrial Fibrillation Monitoring Strategies After Cryptogenic Stroke (from the Cryptogenic Stroke and Underlying AF Trial)
Ischemic stroke cause remains undetermined in 30% of cases, leading to a diagnosis of cryptogenic stroke. Paroxysmal atrial fibrillation (AF) is a major cause of ischemic stroke but may go undetected with short periods of ECG monitoring. The Cryptogenic Stroke and Underlying Atrial Fibrillation trial (CRYSTAL AF) demonstrated that long-term electrocardiographic monitoring with insertable cardiac monitors (ICM) is superior to conventional follow-up in detecting AF in the population with cryptogenic stroke. We evaluated the sensitivity and negative predictive value (NPV) of various external monitoring techniques within a cryptogenic stroke cohort. Simulated intermittent monitoring strategies were compared to continuous rhythm monitoring in 168 ICM patients of the CRYSTAL AF trial. Short-term monitoring included a single 24-hour, 48-hour, and 7-day Holter and 21-day and 30-day event recorders. Periodic monitoring consisted of quarterly monitoring through 24-hour, 48-hour, and 7-day Holters and monthly 24-hour Holters. For a single monitoring period, the sensitivity for AF diagnosis was lowest with a 24-hour Holter (1.3%) and highest with a 30-day event recorder (22.8%). The NPV ranged from 82.3% to 85.6% for all single external monitoring strategies. Quarterly monitoring with 24-hour Holters had a sensitivity of 3.1%, whereas quarterly 7-day monitors increased the sensitivity to 20.8%. The NPVs for repetitive periodic monitoring strategies were similar at 82.6% to 85.3%. Long-term continuous monitoring was superior in detecting AF compared to all intermittent monitoring strategies evaluated (p <0.001). Long-term continuous electrocardiographic monitoring with ICMs is significantly more effective than any of the simulated intermittent monitoring strategies for identifying AF in patients with previous cryptogenic stroke
Clonal transitions and phenotypic evolution in Barrett esophagus
BACKGROUND & AIMS: Barrett's esophagus (BE) is a risk factor for esophageal adenocarcinoma but our understanding of how it evolves is poorly understood. We investigated BE gland phenotype distribution, the clonal nature of phenotypic change, and how phenotypic diversity plays a role in progression. METHODS: Using immunohistochemistry and histology, we analyzed the distribution and the diversity of gland phenotype between and within biopsy specimens from patients with nondysplastic BE and those who had progressed to dysplasia or had developed postesophagectomy BE. Clonal relationships were determined by the presence of shared mutations between distinct gland types using laser capture microdissection sequencing of the mitochondrial genome. RESULTS: We identified 5 different gland phenotypes in a cohort of 51 nondysplastic patients where biopsy specimens were taken at the same anatomic site (1.0-2.0 cm superior to the gastroesophageal junction. Here, we observed the same number of glands with 1 and 2 phenotypes, but 3 phenotypes were rare. We showed a common ancestor between parietal cell-containing, mature gastric (oxyntocardiac) and goblet cell-containing, intestinal (specialized) gland phenotypes. Similarly, we have shown a clonal relationship between cardiac-type glands and specialized and mature intestinal glands. Using the Shannon diversity index as a marker of gland diversity, we observed significantly increased phenotypic diversity in patients with BE adjacent to dysplasia and predysplasia compared to nondysplastic BE and postesophagectomy BE, suggesting that diversity develops over time. CONCLUSIONS: We showed that the range of BE phenotypes represents an evolutionary process and that changes in gland diversity may play a role in progression. Furthermore, we showed a common ancestry between gastric and intestinal-type glands in BE
Progress report no. 1
Statement of responsibility on title-page reads: Editors: I.A. Forbes, M.J. Driscoll, D.D. Lanning, I. Kaplan, N.C. Rasmussen; Contributors: S.A. Ali, S.T. Brewer, D.K. Choi, F.M. Clikeman, W.R. Corcoran, M.J. Driscoll, I.A. Forbes, C.W. Forsberg, S.L. Ho, C.S. Kang, I. Kaplan, J.L. Klucar, D.D. Lanning, T.C. Leung, E.L. McFarland P.G. Mertens, N.R. Ortiz, A. Pant, N.A. Passman, N.C. Rasmussen, M.K. Sheaffer, D.A. Shupe, G.E. Sullivan, A.T. Supple, J.W. Synan, C.P. Tzanos, W.J. Westlake"MIT-4105-3."Includes bibliographical referencesProgress report; June 30, 1970U.S. Atomic Energy Commission contracts: AT(30-1)410
Recommended from our members
Monitoring for atrial fibrillation prior to patent foramen ovale closure after cryptogenic stroke
BackgroundPatients who had a cryptogenic stroke (CS) suspected to be causally related to a patent foramen ovale (PFO) are candidates for percutaneous PFO closure. In such patients, it is important to screen for atrial fibrillation (AF). Limited guidance is available regarding AF monitoring strategies in CS patients with PFO addressing optimal monitoring technology and duration.AimTo provide a narrative review of cardiac rhythm monitoring in CS patients considered for PFO closure, including current practices, stroke recurrences after CS, findings from monitoring studies in CS patients, and predictors for AF detection published in the literature. To propose a personalized strategy for cardiac monitoring in CS patients, accounting for aspects predicting AF detection.Summary of reviewAF detection in CS patients is predicted by age, left atrial enlargement, prolonged PR interval, frequent premature atrial contractions, interatrial conduction block, diabetes, prior brain infarctions, leukoaraiosis, elevated B-type natriuretic peptide (BNP)/N-terminal pro B-type natriuretic peptide (NT-proBNP) levels, and a family history of AF, as well as composed scores (e.g. CHA2DS2-VASc, atrial fibrillation in embolic stroke of undetermined source (AF-ESUS)). The causal role of the PFO may be accounted for by the risk of paradoxical embolism (RoPE) score and/or the PFO-Associated Stroke Causal Likelihood (PASCAL) classification.ConclusionA personalized approach to AF detection in CS patients is proposed, accounting for the likelihood of AF detection and aimed at obtaining sufficient confidence regarding the absence of AF in patients considered for PFO closure. In addition, the impact of high-risk PFO features on the monitoring strategy is discussed
Cryptogenic stroke and underlying atrial fibrillation
BACKGROUND: Current guidelines recommend at least 24 hours of electrocardiographic (ECG) monitoring after an ischemic stroke to rule out atrial fibrillation. However, the most effective duration and type of monitoring have not been established, and the cause of ischemic stroke remains uncertain despite a complete diagnostic evaluation in 20 to 40% of cases (cryptogenic stroke). Detection of atrial fibrillation after cryptogenic stroke has therapeutic implications.
METHODS: We conducted a randomized, controlled study of 441 patients to assess whether long-term monitoring with an insertable cardiac monitor (ICM) is more effective than conventional follow-up (control) for detecting atrial fibrillation in patients with cryptogenic stroke. Patients 40 years of age or older with no evidence of atrial fibrillation during at least 24 hours of ECG monitoring underwent randomization within 90 days after the index event. The primary end point was the time to first detection of atrial fibrillation (lasting >30 seconds) within 6 months. Among the secondary end points was the time to first detection of atrial fibrillation within 12 months. Data were analyzed according to the intention-to-treat principle.
RESULTS: By 6 months, atrial fibrillation had been detected in 8.9% of patients in the ICM group (19 patients) versus 1.4% of patients in the control group (3 patients) (hazard ratio, 6.4; 95% confidence interval [CI], 1.9 to 21.7; P<0.001). By 12 months, atrial fibrillation had been detected in 12.4% of patients in the ICM group (29 patients) versus 2.0% of patients in the control group (4 patients) (hazard ratio, 7.3; 95% CI, 2.6 to 20.8; P<0.001).
CONCLUSIONS: ECG monitoring with an ICM was superior to conventional follow-up for detecting atrial fibrillation after cryptogenic stroke. (Funded by Medtronic; CRYSTAL AF ClinicalTrials.gov number, NCT00924638.)