115 research outputs found

    High Efficiency Megawatt Machine Rotating Cryocooler Conceptual Design

    Get PDF
    Some of the challenges associated with developing electric aircraft propulsion systems include developing powertrain components that are both efficient and light-weight. In particular, electric motors must simultaneously achieve high efficiency by minimizing electrical and mechanical losses while also achieving high specific power by increasing the torque and/or speed. Normally increasing torque or speed will increase electrical and mechanical losses. The High Efficiency Megawatt Machine (HEMM) minimizes electrical losses by incorporating a superconductor to enable increased current on the rotor. And the rotor spins in a vacuum to minimize thermal and mechanical losses. Some organizations have been developing superconducting rotors for similar reasons using either cryogenic fluid transfer systems, fully immersed cryogenic cooling, and in a few cases utilized built-in cryogenic cooling on the rotor using a Brayton or Stirling system but the implementation was too large or inefficient for effective motor integration. Instead, a new approach for cryogenically cooling the superconducting rotor coil with an embedded rotating cryocooler is presented that fits completely within the rotating shaft

    Comparison of Mixing Characteristics for Several Fuel Injectors on an Open Plate and in a Ducted Flowpath Configuration at Hypervelocity Flow Conditions

    Get PDF
    In order to reduce the cost and complexity associated with fuel injection and mixing experiments for high-speed flows, and to further enable optical access to the test section for nonintrusive diagnostics, the Enhanced Injection and Mixing Project (EIMP) utilizes an open flat plate configuration to characterize inert mixing properties of various fuel injectors for hypervelocity applications. The experiments also utilize reduced total temperature conditions to alleviate the need for hardware cooling. The use of "cold" flows and non-reacting mixtures for mixing experiments is not new, and has been extensively utilized as a screening technique for scramjet fuel injectors. The impact of reduced facility-air total temperature, and the use of inert fuel simulants, such as helium, on the mixing character of the flow has been assessed in previous numerical studies by the authors. Mixing performance was characterized for three different injectors: a strut, a ramp, and a flushwall. The present study focuses on the impact of using an open plate to approximate mixing in the duct. Toward this end, Reynolds-averaged simulations (RAS) were performed for the three fuel injectors in an open plate configuration and in a duct. The mixing parameters of interest, such as mixing efficiency and total pressure recovery, are then computed and compared for the two configurations. In addition to mixing efficiency and total pressure recovery, the combustion efficiency and thrust potential are also computed for the reacting simulations

    Oakleaf: an S locus-linked mutation of Primula vulgaris that affects leaf and flower development

    Get PDF
    •In Primula vulgaris outcrossing is promoted through reciprocal herkogamy with insect-mediated cross-pollination between pin and thrum form flowers. Development of heteromorphic flowers is coordinated by genes at the S locus. To underpin construction of a genetic map facilitating isolation of these S locus genes, we have characterised Oakleaf, a novel S locus-linked mutant phenotype. •We combine phenotypic observation of flower and leaf development, with classical genetic analysis and next-generation sequencing to address the molecular basis of Oakleaf. •Oakleaf is a dominant mutation that affects both leaf and flower development; plants produce distinctive lobed leaves, with occasional ectopic meristems on the veins. This phenotype is reminiscent of overexpression of Class I KNOX-homeodomain transcription factors. We describe the structure and expression of all eight P. vulgaris PvKNOX genes in both wild-type and Oakleaf plants, and present comparative transcriptome analysis of leaves and flowers from Oakleaf and wild-type plants. •Oakleaf provides a new phenotypic marker for genetic analysis of the Primula S locus. We show that none of the Class I PvKNOX genes are strongly upregulated in Oakleaf leaves and flowers, and identify cohorts of 507 upregulated and 314 downregulated genes in the Oakleaf mutant

    High Efficiency Megawatt Machine Rotating Cryocooler Conceptual Design

    Get PDF
    Some of the challenges associated with developing electric aircraft propulsion systems include developing powertrain components that are both efficient and light-weight. In particular, electric motors must simultaneously achieve high efficiency by minimizing electrical and mechanical losses while also achieving high specific power by increasing the torque and/or speed. Normally increasing torque or speed will increase electrical and mechanical losses. The High Efficiency Megawatt Machine (HEMM) minimizes electrical losses by incorporating a superconductor to enable increased current on the rotor. And the rotor spins in a vacuum to minimize thermal and mechanical losses. Some organizations have been developing superconducting rotors for similar reasons using either cryogenic fluid transfer systems, fully immersed cryogenic cooling, and in a few cases utilized built-in cryogenic cooling on the rotor using a Brayton or Stirling system but the implementation was too large or inefficient for effective motor integration. Instead, a new approach for cryogenically cooling the superconducting rotor coil with an embedded rotating cryocooler is presented that fits completely within the rotating shaft

    Geometrically Flexible and Efficient Flow Analysis of High Speed Vehicles Via Domain Decomposition, Part 1: Unstructured-Grid Solver for High Speed Flows

    Get PDF
    The ability to solve the equations governing the hypersonic turbulent flow of a real gas on unstructured grids using a spatially-elliptic, 2nd-order accurate, cell-centered, finite-volume method has been recently implemented in the VULCAN-CFD code. This paper describes the key numerical methods and techniques that were found to be required to robustly obtain accurate solutions to hypersonic flows on non-hex-dominant unstructured grids. The methods and techniques described include: an augmented stencil, weighted linear least squares, cell-average gradient method, a robust multidimensional cell-average gradient-limiter process that is consistent with the augmented stencil of the cell-average gradient method and a cell-face gradient method that contains a cell skewness sensitive damping term derived using hyperbolic diffusion based concepts. A data-parallel matrix-based symmetric Gauss-Seidel point-implicit scheme, used to solve the governing equations, is described and shown to be more robust and efficient than a matrix-free alternative. In addition, a y+ adaptive turbulent wall boundary condition methodology is presented. This boundary condition methodology is deigned to automatically switch between a solve-to-the-wall and a wall-matching-function boundary condition based on the local y+ of the 1st cell center off the wall. The aforementioned methods and techniques are then applied to a series of hypersonic and supersonic turbulent flat plate unit tests to examine the efficiency, robustness and convergence behavior of the implicit scheme and to determine the ability of the solve-to-the-wall and y+ adaptive turbulent wall boundary conditions to reproduce the turbulent law-of-the-wall. Finally, the thermally perfect, chemically frozen, Mach 7.8 turbulent flow of air through a scramjet flow-path is computed and compared with experimental data to demonstrate the robustness, accuracy and convergence behavior of the unstructured-grid solver for a realistic 3-D geometry on a non-hex-dominant grid

    Occipital Proton Magnetic Resonance Spectroscopy ((1)H-MRS) Reveals Normal Metabolite Concentrations in Retinal Visual Field Defects

    Get PDF
    BACKGROUND: Progressive visual field defects, such as age-related macular degeneration and glaucoma, prevent normal stimulation of visual cortex. We investigated whether in the case of visual field defects, concentrations of metabolites such as N-acetylaspartate (NAA), a marker for degenerative processes, are reduced in the occipital brain region. METHODOLOGY/PRINCIPAL FINDINGS: Participants known with glaucoma, age-related macular degeneration (the two leading causes of visual impairment in the developed world), and controls were examined by proton MR spectroscopic ((1)H-MRS) imaging. Absolute NAA, Creatine and Choline concentrations were derived from a single-voxel in the occipital region of each brain hemisphere. No significant differences in metabolites concentrations were found between the three groups. CONCLUSIONS/SIGNIFICANCE: We conclude that progressive retinal visual field defects do not affect metabolite concentration in visual brain areas suggesting that there is no ongoing occipital degeneration. We discuss the possibility that metabolite change is too slow to be detectable

    Homosexual Women Have Less Grey Matter in Perirhinal Cortex than Heterosexual Women

    Get PDF
    Is sexual orientation associated with structural differences in the brain? To address this question, 80 homosexual and heterosexual men and women (16 homosexual men and 15 homosexual women) underwent structural MRI. We used voxel-based morphometry to test for differences in grey matter concentration associated with gender and sexual orientation. Compared with heterosexual women, homosexual women displayed less grey matter bilaterally in the temporo-basal cortex, ventral cerebellum, and left ventral premotor cortex. The relative decrease in grey matter was most prominent in the left perirhinal cortex. The left perirhinal area also showed less grey matter in heterosexual men than in heterosexual women. Thus, in homosexual women, the perirhinal cortex grey matter displayed a more male-like structural pattern. This is in accordance with previous research that revealed signs of sex-atypical prenatal androgenization in homosexual women, but not in homosexual men. The relevance of the perirhinal area for high order multimodal (olfactory and visual) object, social, and sexual processing is discussed
    • …
    corecore