105 research outputs found

    Geothermal Energy Utilisation -Ireland Country Update

    Get PDF
    ABSTRACT Geothermal energy in Ireland is dominated by the exploitation of low temperature resources for space heating using heat pumps. Domestic ground source heat pumps installations for space heating and domestic hot water are the principal application despite a decline in the number of domestic installations between 2010 and 2014. The slower but steady increase in the number of heat pump units installed in Ireland between 2010 and 2014 accounts for a total of 177 MWt installed capacity (a 13 MWt increase from the WGC 2010 report). The recent difficult economic situation and the end of the dedicated financial support for domestic ground source heat pumps has resulted in fewer systems being installed during this period, with the main deployment attributed to large scale open and closed loop ground source systems with individual installed capacities of up to 2 MWt in size. Since the initial exploration drilling on the southern margin of the Dublin Basin, the deep geothermal energy sector has progressed very slowly. Despite encouraging results from 2D seismic reflection surveys at the Newcastle project and planning for the first deep geothermal electricity plant being granted in late 2010, the lack of subsidies for geothermal electricity generation and the holdup in the implementation of a legislative framework for licensing deep geothermal resource exploration and development have stalled the sector. Extensive research aimed at better understanding deep geothermal resources in different geological settings in Ireland is being undertaken. A number of initiatives to stimulate a sustainable future development of the shallow geothermal energy sector in Ireland are being implemented. These are aimed at tackling some of the barriers to the future development of the geothermal sector that have been identified. Technical guideline documentation and new interactive mapping of the shallow geothermal resources and their potential for deployment in Ireland are being developed with a view to providing standards for system installation and increasing public awareness amongst users and local authorities about shallow geothermal energy potential. The structure of a national database of ground source systems is being developed with a view to improving the reporting of shallow geothermal energy installations in Ireland. New comprehensive training initiatives and certification for industry stakeholders involved in design and installation of systems are currently being undertaken

    Long-lived nonthermal electron distribution in aluminum excited by femtosecond extreme ultraviolet radiation

    Get PDF
    We report a time-resolved study of the relaxation dynamics of Al films excited by ultrashort intense free-electron laser (FEL) extreme ultraviolet pulses. The system response was measured through a pump-probe detection scheme, in which an intense FEL pulse tuned around the Al L2,3 edge (72.5 eV) acted as the pump, while a time-delayed ultrafast pulse probed the near-infrared (NIR) reflectivity of the Al film. Remarkably, following the intense FEL excitation, the reflectivity of the film exhibited no detectable variation for hundreds of femtoseconds. Following this latency time, sizable reflectivity changes were observed. Exploiting recent theoretical calculations of the EUV-excited electron dynamics [N. Medvedev et al., Phys. Rev. Lett. 107, 165003 (2011)], the delayed NIR-reflectivity evolution is interpreted invoking the formation of very-long-living nonthermal hot electron distributions in Al after exposure to EUV pulses. Our data represent the first evidence in the time domain of such an intriguing behavior

    Application of a method for the sustainable planning and management of ground source heat pump systems in an urban environment, considering the effects of reciprocal thermal interference

    Get PDF
    [EN] The ÂżMost Easy, Efficient and Low Cost Geothermal Systems for Retrofitting Civil and Historical BuildingsÂż (GEO4CIVHIC) project aims to accelerate the deployment of shallow geothermal systems for heating and cooling purposes when retrofitting existing and historical buildings. Analyzing the implementation process of borehole heat exchangers (BHEs), allows the understanding of how to promote the long-term sustainability of shallow geothermal energy systems. The thermal interference between BHE systems represents a problem, especially due to the increasing deployment of this technology and its spread in densely built-up areas. The main goal of this paper is to propose a conceptual model and to apply this to different case studies. The methodology includes phases to adopt an integrated approach for preventing long term thermal interference in neighbouring borehole heat exchangers, by providing management strategies and technical suggestions for design and operation. The method developed follows the following steps: 1) literature review to determine what are the main drivers for thermal interference between shallow geothermal systems, in the context of the GEO4CIVHIC project case study sites; 2) to create a conceptual model to limit thermal interference at both design and operational phases; 3) to apply the developed method to real and virtual case studies in countries with different regulatory frameworks and to test its main strengths and weaknesses. The application of this conceptual model to specific case studies provides evidence of critical planning and operational characteristics of GSHP systems and allows the identification of measures to mitigate impacts of thermal interference to be identified.This research was financially supported by the European UnionÂżs Horizon 2020 research and innovation programme under the grant agreement No 792355 (Most Easy, Efficient and Low Cost Geothermal Systems for Retrofitting Civil and Historical Buildings [GEO4CIVHIC]).Belliardi, M.; Soma, L.; Perego, R.; Pera, S.; Di Sipio, E.; Zarrella, A.; Carnieletto, L.... (2022). Application of a method for the sustainable planning and management of ground source heat pump systems in an urban environment, considering the effects of reciprocal thermal interference. Open Research Europe. 2:1-20. https://doi.org/10.12688/openreseurope.14665.2120

    New tools to support the designing of efficient and reliable ground source heat exchangers: the Cheap-GSHPs databases and maps

    Get PDF
    Abstract. The final aim of the EU funded Cheap-GSHPs project is to reduce the total installation cost of closed-loop shallow geothermal systems. As part of the project a Decision Support System (DSS) has been developed and released on the web, in order to support the design of new closed-loop geo-exchange systems. The Cheap-GSHP project addresses all the aspects involved in planning and dimensioning a new borefield and therefore, the DSS is composed of several databases and tools that collect and elaborate the preliminary data and information that are necessary during the sizing phase, such as the geological and drilling aspects as well as the heating and cooling building demand. This paper briefly introduces the content of the databases and the mapping methodology developed for the Cheap-GSHPs DSS. All these researches are further deepen in the EU project GEO4CIVHIC, with a special attention to the application of shallow geothermal systems for building conditioning to historical buildings.</p

    An updated ground thermal properties database for GSHP applications

    Get PDF
    Abstract When a new ground source heat exchanger field is planned, underground thermal properties input data are necessary for the correct sizing of the geo-exchange system. To support the design, the EU founded Cheap-GSHPs project developed a Decision Support System, that comprises a new database of thermal properties for both rocks and unconsolidated sediments. The thermal properties database has been developed by integrating and comparing data (1) provided by the most important international guidelines, (2) acquired from a wide literature review and (3) obtained from more than 400 direct measurements. The data are mainly thermal conductivity data, hence the convective contribution provided by groundwater flow to heat transfer is not included. This paper presents and analyses the collected database

    two software tools for facilitating the choice of ground source heat pumps by stakeholders and designers

    Get PDF
    For promoting the diffusion of GSHP and making the technology more accessible to the general public, in the H2020 research project "CHeap and Efficient APplication of reliable Ground Source Heat exchangers and PumpS" (acronym Cheap-GSHPs) a tool for sizing these systems has been developed, as well as a Decision Support System (DSS) able to assist the user in the preliminary design of the most suitable configuration. For all these tools a common platform has been carried out considering climatic conditions, energy demand of buildings, ground thermal properties, heat pump solutions repository, as well as renewable energy database to use in synergy with the GSHPs. Since the aims of the tools are different, there are different approaches. The design tool is mainly addressed to designers. The calculation may be done in two ways: with a simplified method based on the ASHRAE approach and with a detailed calculation based on the numerical tool CaRM (Capacity-Resistance method). The DSS final aim is to support decision-making, by providing the stakeholders at all the level with a series of scenario. The Cheap-GSHPs project has developed a DSS tool aimed at accelerating the decision-making process of designers and building owners as well as increasing market share of the Cheap-GSHPs technologies. Hence the DSS generates different possible solutions based on a defined general problem, identifying the optimal solution. Both tools are presented in the paper, showing the potentialities provided by both software

    COVID-19 Severity in Multiple Sclerosis: Putting Data Into Context

    Get PDF
    Background and objectives: It is unclear how multiple sclerosis (MS) affects the severity of COVID-19. The aim of this study is to compare COVID-19-related outcomes collected in an Italian cohort of patients with MS with the outcomes expected in the age- and sex-matched Italian population. Methods: Hospitalization, intensive care unit (ICU) admission, and death after COVID-19 diagnosis of 1,362 patients with MS were compared with the age- and sex-matched Italian population in a retrospective observational case-cohort study with population-based control. The observed vs the expected events were compared in the whole MS cohort and in different subgroups (higher risk: Expanded Disability Status Scale [EDSS] score &gt; 3 or at least 1 comorbidity, lower risk: EDSS score ≤ 3 and no comorbidities) by the χ2 test, and the risk excess was quantified by risk ratios (RRs). Results: The risk of severe events was about twice the risk in the age- and sex-matched Italian population: RR = 2.12 for hospitalization (p &lt; 0.001), RR = 2.19 for ICU admission (p &lt; 0.001), and RR = 2.43 for death (p &lt; 0.001). The excess of risk was confined to the higher-risk group (n = 553). In lower-risk patients (n = 809), the rate of events was close to that of the Italian age- and sex-matched population (RR = 1.12 for hospitalization, RR = 1.52 for ICU admission, and RR = 1.19 for death). In the lower-risk group, an increased hospitalization risk was detected in patients on anti-CD20 (RR = 3.03, p = 0.005), whereas a decrease was detected in patients on interferon (0 observed vs 4 expected events, p = 0.04). Discussion: Overall, the MS cohort had a risk of severe events that is twice the risk than the age- and sex-matched Italian population. This excess of risk is mainly explained by the EDSS score and comorbidities, whereas a residual increase of hospitalization risk was observed in patients on anti-CD20 therapies and a decrease in people on interferon

    SARS-CoV-2 serology after COVID-19 in multiple sclerosis: An international cohort study

    Get PDF

    DMTs and Covid-19 severity in MS: a pooled analysis from Italy and France

    Get PDF
    We evaluated the effect of DMTs on Covid-19 severity in patients with MS, with a pooled-analysis of two large cohorts from Italy and France. The association of baseline characteristics and DMTs with Covid-19 severity was assessed by multivariate ordinal-logistic models and pooled by a fixed-effect meta-analysis. 1066 patients with MS from Italy and 721 from France were included. In the multivariate model, anti-CD20 therapies were significantly associated (OR&nbsp;=&nbsp;2.05, 95%CI&nbsp;=&nbsp;1.39–3.02, p&nbsp;&lt;&nbsp;0.001) with Covid-19 severity, whereas interferon indicated a decreased risk (OR&nbsp;=&nbsp;0.42, 95%CI&nbsp;=&nbsp;0.18–0.99, p&nbsp;=&nbsp;0.047). This pooled-analysis confirms an increased risk of severe Covid-19 in patients on anti-CD20 therapies and supports the protective role of interferon
    • …
    corecore