28 research outputs found

    The Long Distance Transport of Airborne Ambrosia Pollen to the UK and the Netherlands from Central and South Europe

    Get PDF
    Background: The invasive alien species Ambrosia artemisiifolia (common or short ragweed) is increasing its range in Europe. In the UK and the Netherlands airborne concentrations of Ambrosia pollen are usually low. However, more than 30 Ambrosia pollen grains per cubic metre of air (above the level capable to trigger allergic symptoms) were recorded in Leicester (UK) and Leiden (NL) on 4 and 5 September 2014. Objective: The aims of this study were to determine whether the highly allergenic Ambrosia pollen recorded during the episode could be the result of long distance transport, to identify the potential sources of these pollen grains and describe the conditions that facilitated this possible long distance transport. Methods: Airborne Ambrosia pollen data were collected at 10 sites in Europe. Back trajectory and atmospheric dispersion calculations were performed using HYSPLIT_4. Results: Back trajectories calculated at Leicester and Leiden show that higher altitude air masses (1500m) originated from source areas on the Pannonian Plain and Ukraine. During the episode, air masses veered to the west and passed over the Rhône Valley. Dispersion calculations showed that the atmospheric conditions were suitable for Ambrosia pollen released from the Pannonian Plain and the Rhône Valley to reach the higher levels and enter the air stream moving to Northwest Europe where they were deposited at ground level and recorded by monitoring sites. Conclusions: The study indicates that the Ambrosia pollen grains recorded during the episode in Leicester and Leiden were probably not produced by local sources, but transported long distances from potential source regions in East Europe, i.e. the Pannonian Plain and Ukraine, as well as the Rhône Valley in France

    Kinetic model of II-VI(001) semiconductor surfaces: Growth rates in atomic layer epitaxy

    Get PDF
    We present a zinc-blende lattice gas model of II-VI(001) surfaces, which is investigated by means of Kinetic Monte Carlo (KMC) simulations. Anisotropic effective interactions between surface metal atoms allow for the description of, e.g., the sublimation of CdTe(001), including the reconstruction of Cd-terminated surfaces and its dependence on the substrate temperature T. Our model also includes Te-dimerization and the potential presence of excess Te in a reservoir of weakly bound atoms at the surface. We study the self-regulation of atomic layer epitaxy (ALE) and demonstrate how the interplay of the reservoir occupation with the surface kinetics results in two different regimes: at high T the growth rate is limited to 0.5 layers per ALE cycle, whereas at low enough T each cycle adds a complete layer of CdTe. The transition between the two regimes occurs at a characteristic temperature and its dependence on external parameters is studied. Comparing the temperature dependence of the ALE growth rate in our model with experimental results for CdTe we find qualitative agreement.Comment: 9 pages (REVTeX), 8 figures (EPS). Content revised, references added, typos correcte

    Air mass trajectories and land cover map reveal cereal crops as major local sources of Alternaria spores in Worcester and Leicester, UK.

    Get PDF
    Alternaria is a plant pathogen and human allergen. Agricultural areas are known sources of Alternaria spores. Transport of Alternaria spores may occur between such geographical regions. This study examined Alternaria spore abundance and potential pathways for atmospheric transport of the spores between the cities of Worcester and Leicester in the UK, both surrounded by agricultural land. Alternaria spores were sampled using Burkard volumetric samplers for the period 2016-2018 at Worcester and Leicester, located ~90 km apart. The Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model and UK’s land cover map for crops were used to examine the relationship between air mass trajectories and potential source areas of Alternaria spores at the two locations during an episode (27 Jul-07 Aug 2017) of high spore concentrations. During the 3 years of observation, 61 and 151 days of clinical relevance were recorded at Worcester and Leicester, respectively. Spore concentrations at Leicester were considerably higher than in Worcester. Analysis of the crop map showed higher amounts of winter barley and oilseed rape near to Leicester than Worcester. HYSPLIT calculations showed that during the episode, the air masses arrived at both stations from Ireland and the Atlantic Ocean. Long distance transport probably had a small and equal contribution to the observations at both sites. The hypothesis is therefore that the substantially higher concentrations of Alternaria spores at Leicester are caused by specific local sources with high emission potential: potentially winter barley and oilseed rape. Local sources of winter barley and oilseed rape likely contributed to Alternaria spore concentrations of clinical significance in the urban areas of Leicester and Worcester. The strength of the local sources likely resulted in higher emissions of spores at Leicester than at Worcester. Long distance transport probably had a small but equal contribution to the total spore load at the two stations

    Alternaria Spores in the Air Across Europe: Abundance, Seasonality and Relationships with Climate, Meteorology and Local Environment

    Get PDF
    We explored the temporal and spatial variations in airborne Alternaria spore quantitative and phenological features in Europe using 23 sites with annual time series between 3 and 15 years. The study covers seven countries and four of the main biogeographical regions in Europe. The observations were obtained with Hirst-type spore traps providing time series with daily records. Site locations extend from Spain in the south to Denmark in the north and from England in the West to Poland in the East. The study is therefore the largest assessment ever carried out for Europe concerning Alternaria. Aerobiological data were investigated for temporal and spatial patterns in their start and peak season dates and their spore indices. Moreover, the effects of climate were checked using meteorological data for the same period, using a crop growth model. We found that local climate, vegetation patterns and management of landscape are governing parameters for the overall spore concentration, while the annual variations caused by weather are of secondary importance but should not be neglected. The start of the Alternaria spore season varies by several months in Europe, but the peak of the season is more synchronised in central northern Europe in the middle of the summer, while many southern sites have peak dates either earlier or later than northern Europe. The use of a crop growth model to explain the start and peak of season suggests that such methods could be useful to describe Alternaria seasonality in areas with no available observations

    Airborne Alternaria and Cladosporium Fungal Spores in Europe: Forecasting Possibilities and Relationships with Meteorological Parameters

    Get PDF
    Airborne fungal spores are prevalent components of bioaerosols with a large impact on ecology, economy and health. Their major socioeconomic effects could be reduced by accurate and timely prediction of airborne spore concentrations. The main aim of this study was to create and evaluate models of Alternaria and Cladosporium spore concentrations based on data on a continental scale. Additional goals included assessment of the level of generalization of the models in space and description of the main meteorological factors influencing fungal spore concentrations. Aerobiological monitoring was carried out at 18 sites in six countries across Europe over 3 to 21 years depending on site. Quantile random forest modelling was used to predict spore concentrations values. Generalization of the Alternaria and Cladosporium models was tested using (i) one model for all the sites, (ii) models for groups of sites, and (iii) models for individual sites. The study revealed the possibility of reliable prediction of fungal spore levels using gridded meteorological data. The classification models also showed the capacity for providing larger scale predictions of fungal spore concentrations. Regression models were distinctly less accurate than classification models due to several factors, including measurement errors and distinct day-to-day changes of concentrations. Temperature and vapour pressure proved to be the most important variables in the regression and classification models of Alternaria and Cladosporium spore concentrations. Accurate and operational daily-scale predictive models of bioaerosol abundances contribute to the assessment and evaluation of relevant exposure and consequently more timely and efficient management of phytopathogenic and of human allergic diseases

    Airborne Alternaria and Cladosporium Fungal Spores in Europe: Forecasting Possibilities and Relationships with Meteorological Parameters

    Get PDF
    Airborne fungal spores are prevalent components of bioaerosols with a large impact on ecology, economy and health. Their major socioeconomic effects could be reduced by accurate and timely prediction of airborne spore concentrations. The main aim of this study was to create and evaluate models of Alternaria and Cladosporium spore concentrations based on data on a continental scale. Additional goals included assessment of the level of generalization of the models in space and description of the main meteorological factors influencing fungal spore concentrations. Aerobiological monitoring was carried out at 18 sites in six countries across Europe over 3 to 21 years depending on site. Quantile random forest modelling was used to predict spore concentrations values. Generalization of the Alternaria and Cladosporium models was tested using (i) one model for all the sites, (ii) models for groups of sites, and (iii) models for individual sites. The study revealed the possibility of reliable prediction of fungal spore levels using gridded meteorological data. The classification models also showed the capacity for providing larger scale predictions of fungal spore concentrations. Regression models were distinctly less accurate than classification models due to several factors, including measurement errors and distinct day-to-day changes of concentrations. Temperature and vapour pressure proved to be the most important variables in the regression and classification models of Alternaria and Cladosporium spore concentrations. Accurate and operational daily-scale predictive models of bioaerosol abundances contribute to the assessment and evaluation of relevant exposure and consequently more timely and efficient management of phytopathogenic and of human allergic diseases

    A genomic scan for selection reveals candidates for genes involved in the evolution of cultivated sunflower (Helianthus annuus)

    No full text
    Genomic scans for selection are a useful tool for identifying genes underlying phenotypic transitions. In this article, we describe the results of a genome scan designed to identify candidates for genes targeted by selection during the evolution of cultivated sunflower. This work involved screening 492 loci derived from ESTs on a large panel of wild, primitive (i.e., landrace), and improved sunflower (Helianthus annuus) lines. This sampling strategy allowed us to identify candidates for selectively important genes and investigate the likely timing of selection. Thirty-six genes showed evidence of selection during either domestication or improvement based on multiple criteria, and a sequence-based test of selection on a subset of these loci confirmed this result. In view of what is known about the structure of linkage disequilibrium across the sunflower genome, these genes are themselves likely to have been targeted by selection, rather than being merely linked to the actual targets. While the selection candidates showed a broad range of putative functions, they were enriched for genes involved in amino acid synthesis and protein catabolism. Given that a similar pattern has been detected in maize (Zea mays), this finding suggests that selection on amino acid composition may be a general feature of the evolution of crop plants. In terms of genomic locations, the selection candidates were significantly clustered near quantitative trait loci (QTL) that contribute to phenotypic differences between wild and cultivated sunflower, and specific instances of QTL colocalization provide some clues asto the roles that these genes may have played during sunflower evolution

    Regional Pollen Calendars for the United Kingdom

    No full text
    Background Pollen calendars are a clear and concise way of presenting pollen season information to the public and health care professionals as well as other researchers in the field of aerobiology. In the UK, approximately 20% of the population is currently affected by seasonal respiratory symptoms from various pollen types including Corylus spp, Alnus spp, Betula spp, Quercus spp, Poaceae & Urticaceae, amongst others. The pollen data from the UK network of pollen monitoring stations demonstrates spatial and temporal variations across the country but there is no scientifically rigorous data to show this regional pattern for all these taxa in a format suitable for the public arena, i.e. regional pollen calendars. The aim of this study was to therefore produce a set of regional pollen calendars for the UK. Methods Pollen data, for 2004-2013, collected at UK pollen monitoring stations using Burkard 7-day volumetric spore traps, was used to compile regional pollen calendars for ten years. A simplified version for GPs and general public containing the six most important allergens in the UK was presented. The simplified calendars were presented in tabular form showing coloured duration bars with peak period, mean onset and end dates (2.5/97.5% method), first high day, mean number of high days and seasonal catch, per taxon. A complete data set with additional taxa will also be produced for specialist use by researchers and healthcare professionals. Results The calendars highlight the spatial and temporal variations across the UK, indicating that the southern and central sites generally have the longest and most severe seasons, which start and finish the earliest and have the greatest number of high count days. The sites furthest west and north have later, shorter and milder seasons by comparison. Conclusions The pollen calendars have highlighted the spatial and temporal differences in the UK’s pollen seasons and provided accessible data for the public and health care professionals

    Abundance of Ganoderma sp. in Europe and SW Asia: modelling the pathogen infection levels in local trees using the proxy of airborne fungal spore concentrations

    No full text
    Ganoderma comprises a common bracket fungal genus that causes basal stem rot in deciduous and coniferous trees and palms, thus having a large economic impact on forestry production. We estimated pathogen abundance using long-term, daily spore concentration data collected in five biogeographic regions in Europe and SW Asia. We hypothesized that pathogen abundance in the air depends on the density of potential hosts (trees) in the surrounding area, and that its spores originate locally. We tested this hypothesis by (1) calculating tree cover density, (2) assessing the impact of local meteorological variables on spore concentration, (3) computing back trajectories, (4) developing random forest models predicting daily spore concentration. The area covered by trees was calculated based on Tree Density Datasets within a 30 km radius from sampling sites. Variations in daily and seasonal spore concentrations were cross-examined between sites using a selection of statistical tools including HYSPLIT and random forest models. Our results showed that spore concentrations were higher in Northern and Central Europe than in South Europe and SW Asia. High and unusually high spore concentrations (> 90th and > 98th percentile, respectively) were partially associated with long distance transported spores: at least 33% of Ganoderma spores recorded in Madeira during days with high concentrations originated from the Iberian Peninsula located >900 km away. Random forest models developed on local meteorological data performed better in sites where the contribution of long distance transported spores was lower. We found that high concentrations were recorded in sites with low host density (Leicester, Worcester), and low concentrations in Kastamonu with high host density. This suggests that south European and SW Asian forests may be less severely affected by Ganoderma. This study highlights the effectiveness of monitoring airborne Ganoderma spore concentrations as a tool for assessing local Ganoderma pathogen infection levels
    corecore