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Abstract 41 

Airborne fungal spores are prevalent components of bioaerosols with a large impact on 42 

ecology, economy and health. Their major socioeconomic effects could be reduced by 43 

accurate and timely prediction of airborne spore concentrations. The main aim of this study 44 

was to create and evaluate models of Alternaria and Cladosporium spore concentrations 45 

based on data on a continental scale. Additional goals included assessment of the level of 46 
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generalization of the models in space and description of the main meteorological factors 47 

influencing fungal spore concentrations.  48 

Aerobiological monitoring was carried out at 18 sites in six countries across Europe over 3 to 49 

21 years depending on site. Quantile random forest modelling was used to predict spore 50 

concentrations values. Generalization of the Alternaria and Cladosporium models was tested 51 

using (i) one model for all the sites, (ii) models for groups of sites, and (iii) models for 52 

individual sites. 53 

The study revealed the possibility of reliable prediction of fungal spore levels using gridded 54 

meteorological data. The classification models also showed the capacity for providing larger 55 

scale predictions of fungal spore concentrations. Regression models were distinctly less 56 

accurate than classification models due to several factors, including measurement errors and 57 

distinct day-to-day changes of concentrations. Temperature and vapour pressure proved to be 58 

the most important variables in the regression and classification models of Alternaria and 59 

Cladosporium spore concentrations.  60 

Accurate and operational daily-scale predictive models of bioaerosol abundances contribute to 61 

the assessment and evaluation of relevant exposure and consequently more timely and 62 

efficient management of phytopathogenic and of human allergic diseases. 63 

 64 
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• No operational forecasting model for allergenic fungal spore exposure exists in Europe  70 

• Potential exposure in Europe was assessed and predicted for 2 major allergenic fungi 71 

• Random forest modelling was applied to >7,000 daily time series 72 

• Air temperature and vapour pressure were the most significant variables  73 

• Classification models showed higher capacity for large-scale spore predictions 74 

 75 

 76 

1. Introduction 77 

Fungal spores are one of the most prevalent components of bioaerosols, found across a 78 

wide range of biogeographic regions over long time periods each year. The primary source of 79 

spore emissions are the substrates on which fungi grow, such as plants, soil and decaying 80 

organic matter. This means the majority of fungal spores in the air originate from farms, forest 81 

stands and decomposing plant material (Bowers et al., 2013). They will remain airborne for 82 

variable amounts of time and will be transported over distances ranging from a few 83 

centimeters to hundreds of kilometers (Ansari et al., 2015; Heald and Spracklen, 2009; 84 

Stockmarr et al., 2007).  85 

Alternaria and Cladosporium are ubiquitous asexually reproducing fungal genera that 86 

produce spores, known as conidia, which are readily airborne. Both genera contain plant 87 

pathogens (Carlile et al., 2007; Chaerani and Voorrips, 2006; Lee et al., 1997; Nowicki et al., 88 

2012; Thomma et al., 2005), many of which also produce phytotoxic metabolites that affect 89 

mammalian cells (De Lucca, 2007; Friesen et al., 2008; Mamgain et al., 2013).  Fungal spores 90 

are also important aeroallergens, causing adverse health effects (Krouse et al., 2002).  91 

Aerobiological surveys reported Alternaria as one of the most prevalent airborne 92 

fungal types and an important aeroallergen (Budd, 1986; Mitakakis et al., 2001). Also, 93 

Cladosporium is frequently reported as the most abundant aeroallergen and the second most 94 
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allergenic fungal type worldwide (Tariq et al., 1996). Allergy to fungi from both genera has 95 

been responsible for hospital admissions due to severe asthma attacks in sensitized 96 

individuals, particularly among children (Bush and Prochnau, 2004; Dales et al., 2000). Due 97 

to their ubiquitous nature (Damialis et al., 2017; Jędryczka, 2014) exposure to these 98 

aeroallergens is literally inevitable during their dispersion season. 99 

It is important to assess the potential risks of the atmospheric presence of fungal 100 

spores, and more research is needed to evaluate this (Beggs, 2004; Crameri et al., 2014). 101 

There is limited data on long-term trends in airborne fungal spore abundance, in part due to a 102 

lack of representative fungal spore data sets longer than a decade across the globe. Airborne 103 

fungal spores as allergens have received comparatively less attention than pollen, and 104 

associated public health consequences are likely to have been underestimated (Damialis et al. 105 

2015). 106 

Sporulation and dispersion of fungi are influenced by several meteorological factors, 107 

including air temperature, relative humidity, precipitation, atmospheric turbulence, wind 108 

speed,  and UVB radiation (Al-Subai, 2002; Carlile et al., 2007; Cecchi et al., 2010; Straatsma 109 

et al., 2001). However, the exact influence of climatic variability on fungal ecology at a larger 110 

scale is still not understood. There are indications that changing climate may lead to 111 

alterations in phenology (Corden et al., 2003; Gange et al., 2007; Kauserud et al., 2010) and 112 

dynamics of fungal communities (Gange et al., 2011).  113 

This complexity of biological and ecological processes represent one of the key 114 

problems of modelling biological systems. There are inconsistencies regarding what drives 115 

and controls the distribution of fungal bioaerosols both at a local and regional scale. Multiple 116 

meteorological factors may alter the spatiotemporal distribution of Alternaria and 117 

Cladosporium spores (Corden et al., 2003; Damialis and Gioulekas, 2006; De Linares et al., 118 

2010; Escudero et al., 2011; Iglesias et al., 2007; Recio et al., 2012; Sindt et al., 2016; Skjøth 119 
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et al., 2016). The relationships between fungal development and environmental factors, 120 

including major climatic variables, are often the only component used for disease forecasting 121 

systems (van Maanen and Xu, 2003). 122 

Atmospheric dispersion models have been used to describe the spatiotemporal 123 

dispersal of fungal pathogens (Burie et al., 2012; Oteros et al., 2015; Stockmarr et al., 2007; 124 

van Leuken et al., 2016). Additionally, descriptive, predictive or conceptual modelling of 125 

airborne fungal spores concentration is another promising tool, albeit challenging (Grinn-126 

Gofroń and Bosiacka, 2015; Grinn-Gofroń et al., 2018; Iglesias et al., 2007; Jędryczka et al., 127 

2015). At a minimum, high-resolution data on meteorological and geographic variables should 128 

be included in such models. It is important to include and analyse all associated factors, so 129 

that the resulting models can accurately describe the complex environmental inter-130 

dependencies.  131 

Given the widespread, ecological, economical and health impact of spores from 132 

Alternaria and Cladosporium, the main goal of the present study was to build models that 133 

generalize beyond the observed data and are capable of estimating the spatiotemporal 134 

distribution and concentration of fungal spores on a broad scale and to address the factors that 135 

influence the fungal spatiotemporal patterns. Created models could help to answer several 136 

questions - (i) is it possible to make a reliable prediction of fungal spore concentrations using 137 

only one model for all sites, (ii) is there a difference in quality between one model for all the 138 

sites, models for the groups of sites, and models for individual sites, (iii) what are the main 139 

meteorological factors influencing fungal spore concentrations, and (iv) do these factors differ 140 

between created models (analysed sites)?  141 

2. Materials and Methods 142 

2.1. Aerobiological data 143 
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The taxa selected for this study were those of Alternaria and Cladosporium. These comprise 144 

some of the most well studied fungal taxa worldwide due to their allergenic and 145 

phyopathogenic properties. In the current research, the spore abundance ranges greatly from 146 

>15% to over 96% of the total annual spore index per site (Table 2). This variation alone 147 

challenges for the elaboration of a universal forecasting model in Europe. But even if we had 148 

added the rest of the fungal diversity per site, this would have not most probably provided any 149 

additional insight to either ecological/biological processes or health impacts, as responses of 150 

different fungi are highly individualistic and their sensitivity (or not) to environmental stress 151 

(i.e. climate change) would not be reflected reliably (e.g. Damialis et al. 2015). Also, in most 152 

stations in the world, mainly these two types alone are counted. So as to obtain similar data in 153 

such a large-scale spatial study design and consequently comparable results, we did not 154 

extend to the investigation of additional fungal taxa. 155 

Fungal spores were collected in the frame of long-term aerobiological monitoring in 156 

18 sites from six countries across Europe and for a time span of 1987-2015 (Fig. 1, Table 1). 157 

Alternaria spore concentrations were measured at all sites and Cladosporium spore 158 

concentrations at 15 out of the 18 (Table 1).  159 

 In brief, for this research, all data providers have been inquired regarding major 160 

changes in methodological procedures and no significant alteration has been reported. 161 

Moreover, in all participating countries, microscopic identification of airborne fungal spores 162 

has been conducted by experts with long-standing experience in such techniques. Therefore, 163 

in all stations, the same method of collection and analysis was used. Standard sampling, 164 

processing and analysis techniques were followed, according to the recommendations of the 165 

European Aerobiology Society (Frenguelli, 2003) and the British Aerobiology Federation 166 

(1995). At each location, a Hirst-type volumetric spore trap was used to sample airborne 167 

fungal spores (Hirst, 1952), which is considered the gold-standard device for sampling 168 
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airborne particles of biological origin (Galán et al., 2014). Samples were collected and 169 

analysed weekly, applying standard methods for sample processing and microscopic 170 

identification (e.g. British Aerobiology Federation, 1995; Galán et al., 2014; Grant Smith, 171 

1984). Final measurements referred to daily resolution and were expressed as concentrations 172 

of fungal spores per cubic meter of air on a given date. 173 

2.2. Meteorological data 174 

Eight meteorological factors were included as co-factors in the data analysis, namely 175 

maximum temperature, minimum temperature, average temperature, vapour pressure, sum of 176 

precipitation, potential evaporation from a free water surface, potential evapotranspiration 177 

from a crop canopy, and total global radiation. These were acquired from the AGRI4CAST 178 

Interpolated Meteorological Database (Baruth et al., 2007).  179 

Based on maximum (Tmax) and minimum (Tmin) temperature, an additional ninth 180 

parameter was included, growing degree days (GDD). Cumulative GDD is an indicator 181 

measuring a heat accumulation, and as a proxy, can represent plant and fungal development.  182 

GDD value is calculated as follows: 183 

GDD=
Tmax+Tmi n

2
−Tbase  184 

Values of GDDs were accumulated starting from January 1. GDD do not accumulate when the 185 

daily mean temperature (Tmax + Tmin/2) is lower or equal to the base temperature. Value of 186 

Tbase was set to 5. No relevant previous information on base temperatures for fungal spores 187 

existed, so we assumed that these would be similar to later-flowering plant species (being 188 

abundant mainly during May-August) and which could be found across a variety of latitudes 189 

and climates in Europe; therefore, we set the base temperature at 5, in a similar manner to 190 

studies on grass pollen (Emberlin 1993; Frenguelli et al., 1989).  191 
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All the the abovementioned factors were considered either based on their availability, 192 

or because of the focus of the current study, or based on previous literature on the topic. For 193 

instance, relative humidity data are not available via AGRI4CAST as these cannot be 194 

corrected for altitude differences among sites within the target climatic grid cell. Regarding 195 

other factors, like wind vectors (speed, persistence and direction), these were excluded from 196 

this analysis, as this would make more sense in a smaller-scale temporal data processing, 197 

when the intermittent nature of wind would be possible to take into account. Finally, there 198 

have been previously published reports of particular meteorological factors in site-specific 199 

studies, included in the current analysis, proven to be the most decisive for obtaining accurate 200 

and reliable forecasts (e.g. Damialis and Gioulekas, 2006). 201 

2.3. Models 202 

 Partial autocorrelation function (Durbin, 1960) was applied independently to 203 

Alternaria and Cladosporium daily counts to check for the temporal autocorrelation of spore 204 

data. This summarizes the relationship between an observation xt and observations with 205 

lagged time steps (days) removing the impact of the values at all shorter lags. 206 

Redundancy among the lagged values of meteorological predictors was explored using 207 

principal coordinates analysis (PCA) (Jolliffe, 1986). PCA transforms a number of correlated 208 

variables into a smaller set of uncorrelated variables. The role of PCA in this study was to 209 

reduce the dimension of the data, reduce computational time of models building, minimize 210 

spurious effects of single lags and ease interpretation of the final models. 211 

 Two main types of modeling techniques were used, regression and classification. The 212 

Quantile Random Forest method was used to create regression models. This is a 213 

generalization of Random Forests that infer the full conditional distribution of a response 214 

variable (Li et al., 2011). We decided not to predict mean value, but rather a median value, 215 

because of a non-symmetrical distribution of fungal spore values. Daily spore concentrations 216 
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of Alternaria or Cladosporium were used as dependent variables (model output) in regression 217 

models. Breiman's Random Forest (Breiman, 2001) was used in classification models. So as 218 

to eliminate high levels of statistical noise, daily spore concentrations were divided into two 219 

levels, low and high, according to the thresholds of Alternaria and Cladosporium allergens to 220 

evoke allergic symptoms (Gravesen, 1979). Alternaria values lower than 100 spores were 221 

considered as ‘low’ and beyond that threshold they were characterized as ‘high’. For 222 

Cladosporium, this threshold was 3,000 spores. As airborne fungal spore measurements could 223 

still exhibit a huge disparity in the frequencies of the observed classes, we adopted an 224 

optimizing probability threshold technique (Kuhn and Johnson, 2013; Nowosad, 2016). In this 225 

approach, alternative cutoffs for the predicted probabilities were determined using 226 

resampling. Sensitivity (Sens), specificity (Spec), positive predictive value (Ppv), and 227 

negative predictive value (Npv) were calculated for 20 different threshold values. For each 228 

model, optimal threshold value was established minimizing the distance between Sens, Spec, 229 

Ppv, Npv and the value of 1. This value indicates the best possible performance. 230 

Attempting to also reduce the spatial variability among monitoring sites across 231 

Europe, analyzed sites were divided into three groups based on the annual temporal changes 232 

of fungal spore concentrations and on data availability (Table 1), as follows: northeastern 233 

Spain (Barcelona, Bellaterra, Girona, Lleida, Manresa, Roquetes-Tortosa, Tarragona, Vielha), 234 

western Spain (Don Benito, Plasencia, Zafra) and non-Spanish sites (Derby, Leicester, 235 

Szczecin, Thessaloniki, Timisoara Vinnytsia, Worcester). The grouping was based on the 236 

seasonality and multi-modality of airborne spore concentrations, i.e. the first group exhibited 237 

the highest seasonality and normality of data, with longer seasons and fewer outliers. The 238 

third group presented a bi- or multi- modal yearly pattern, whilst the second group included 239 

those sites with only Alternaria spore measurements. 240 
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The modeling was performed in three ways: 1) per site, 2) per group of sites as 241 

mentioned above, and 3) an integrated model for all sites combined. This resulted in 22 242 

combinations for Alternaria (18 sites, 3 groups of sites, and 1 whole dataset) and 18 243 

combinations for Cladosporium (15 sites, 2 groups of sites, and 1 whole dataset) generating a 244 

total of 40 regression and 40 classification models. 245 

2.4. Validation metrics 246 

 The accuracy of all models was assessed using a repeated k-fold cross-validation 247 

(Kuhn and Johnson, 2013). Regression models were evaluated using the Symmetric Mean 248 

Absolute Percentage Error (SMAPE). Thus, accuracy measure was based on relative errors 249 

instead of standard metrics like Root Mean Square Error (RMSE) or Mean Absolute Error 250 

(MAE), which was particularly important in our study because of high among-site data 251 

variability. Classification modelling results were characterized using balanced accuracy. This 252 

metric is calculated as sensitivity + specifity/2. It is a better measurement in the case of 253 

imbalanced datasets as it gives the same weight for correctly predicted cases with low 254 

concentration and correctly predicted cases with high concentration. Influence of the 255 

predictors was determined using a scaled permutation importance (mean decrease in 256 

accuracy) (Breiman, 2001). 257 

3. Results 258 

3.1. Spatiotemporal variability of spore concentrations 259 

 Fungal spore concentrations differed between Alternaria and Cladosporium, between 260 

sites, and between years of measurements (Table 2, Figs. 2, 3). The annual sum of Alternaria 261 

daily concentrations varied between 907 (Vielha) and 67,166 (Lleida) and had a mean value 262 

of 13,448. In addition to Lleida having the highest average annual sums of Alternaria, the 263 

values here were also the most variable between years. Other sites with substantial changes 264 
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between years were Derby, Thessaloniki, Vielha, and Girona. The annual sum of the daily 265 

concentrations of Cladosporium varied between 24,637 (Thessaloniki) and 1,500,699 (Derby) 266 

and had a mean value of 405,237. Annual spore concentrations in Lleida were also the most 267 

changeable for Cladosporium. Overall, the order of average values for all sites was similar for 268 

Alternaria and Cladosporium with two exceptions, Worcester and Thessaloniki. The annual 269 

sum of the daily concentrations of Alternaria in Worcester were relatively small and 270 

invariable, whilst Cladosporium values were high and changeable. In Thessaloniki Alternaria 271 

levels were moderate and varied substantially, whilst Cladosporium annual values were small 272 

and more consistent. 273 

 For Alternaria, sites could be split into two groups based on the time course of the 274 

season: (i) sites with period of high concentration and period of lower concentrations (such as 275 

Barcelona, Lleida, etc.), (ii) sites with one period of high concentrations and period with 276 

absence of Alternaria spores (such as Szczecin, Thessaloniki and Vielha) (Fig. 2). Time 277 

course of Cladosporium spore concentrations is more heterogeneous, with probably two main 278 

groups: (i) Spanish sites with period of high concentration and period of moderate 279 

concentrations, (ii) sites with one period of high concentration and period with low 280 

concentrations or absence of spore concentrations (such as Szczecin, Derby, Vinnytsia). 281 

Additionally, a third group, consisting of Don Benito, Plasencia, and Zafra, was separated due 282 

to missing data of Cladosporium (Fig. 3).  283 

 284 

3.2. Predictor variables 285 

Based on the spatiotemporal analysis, lagged daily values of nine meteorological parameters 286 

between 1-15 days were created. A principal component analysis (PCA) for each of the 287 

parameters was run and the results of the PCA gave an insight into the variability of 288 

predictors. In most of the cases, the two first components explained the majority of variations. 289 
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The cumulative value was between 0.85 for radiation and 0.94 for average temperature in 290 

these variables. The first component expressed the value of a given parameter (large values of 291 

loadings for all of the lags), whilst the second parameter expressed the temporal changes of a 292 

given parameter (the largest, positive value for the first lag, and the lowest, negative value for 293 

the last lag). In case of cumulated GDD, we used only the first component, which explained 294 

0.95 of variation. Precipitation values were the most changeable, and the first two components 295 

had a cumulative variance of 0.22. Therefore based on the autocorrelation plot, we used raw 296 

values of precipitation for lags between 1 and 4 days. 297 

The final group of predictors consisted of 19 variables - the first principal component 298 

of cumulated GDD, one to four day lags of precipitation, and the first two principal 299 

components of the rest of the meteorological parameters (Table 3). 300 

3.3. Regression models 301 

3.3.1. Performance of the models 302 

 The final 40 regression models (22 for Alternaria and 18 for Cladosporium) were built 303 

and results compared using Symmetric Mean Absolute Percentage Error (SMAPE) (Table 4). 304 

These values ranged between 0.56 and 0.90 for Alternaria (average value of 0.69), and 0.53 305 

and 0.73 for Cladosporium (average value of 0.61). For all of the sites, the models gave a 306 

value of 0.76 for Alternaria and a value of 0.73 for Cladosporium. Those values were slightly 307 

higher than values for separate groups and distinctly higher than values for most of the 308 

individual sites. Similarly, most of the models for the site groups performed worse than the 309 

models for the individual sites. Alternaria model had a SMAPE value of 0.73 for the first 310 

group (average for the models for the individual sites is this group was 0.67), 0.75 for the 311 

second group (average of 0.74), and 0.69 for the third group (average of 0.61). These 312 

differences were higher in Cladosporium models with SMAPE of 0.67 for the first group 313 
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(average of 0.60) and 0.71 for the second group (average of 0.59). Only in four Alternaria 314 

models, Derby, Worcester, and Vielha, values of SMAPE were higher than values for models 315 

of groups of sites. 316 

3.3.2. Variable importance 317 

 The same set of variables seemed to influence the models of both taxa (Fig. 4). The 318 

most important predictors were the first principal coordinates of vapor pressure and 319 

temperatures (minimum, average, maximum and cumulated GDD). They were followed by 320 

the first principal coordinates of evapotranspiration, evaporation, and radiation. The second 321 

principal coordinates of those parameters had small importance. The smallest values were 322 

observed for lagged values of precipitation.  323 

3.4. Classification models 324 

3.4.1. Performance of the models 325 

 The final classification models were compared using the balanced accuracy metric 326 

(Table 4). Average value of balanced accuracy were 0.78 for Alternaria and 0.73 for 327 

Cladosporium. These values varied among sites between 0.50 and 0.90 for Alternaria and 328 

between 0.50 and 0.99 for Cladosporium. Models for all the sites gave similar results of 0.80 329 

and 0.78. The Alternaria model gave a balanced accuracy value of 0.77 for the first group of 330 

sites compared to the average of individual site's models of 0.75, a value of 0.85 for the 331 

second group of sites comparing to the average of individual site's models of 0.81, and a value 332 

of 0.80 for the third group of sites compared to the average of individual site's models of 0.71. 333 

Values of a balanced accuracy for the models of groups of sites were also higher for 334 

Cladosporium. The first group had a value of 0.68 (average for individual sites was 0.66), and 335 

the second group had a value of 0.85 (average for individual sites was 0.80). About 44% (15 336 
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of 34) models for individual sites gave worse values of balanced accuracy than models for 337 

groups of sites.  338 

3.4.2. Variable importance 339 

 Values of variable importance for classification models were more diverse than for 340 

regression models. Alternaria and Cladosporium classification models were influenced 341 

mostly by the same predictors (Fig. 4). Temperature (cumulated GDD) was the most 342 

important variable, followed by the first and second principal coordinate of vapor pressure. 343 

The rest of the predictors showed moderate to low importance. Similarly to regression 344 

models, predictors with values of precipitation had the smallest importance. 345 

 346 

4. Discussion 347 

 The present study revealed that wide-scale, accurate, operational modeling of fungal 348 

spore abundances is feasible with one universal model, which answers the first research 349 

question. Of course, there are restrictions because of annual and spatial variability, which 350 

result in varying performance of the obtained models. Based on the model used, these 351 

individualistic responses (also based on the fungal taxon examined) can be decreased to an 352 

extent. We found that specific meteorological factors significantly contributed to the 353 

forecasting power, with air temperature playing the leading role. Consequently, the current 354 

research highlights the possibility and need for developing universal predictive models of 355 

airborne fungal spore abundances, something currently lacking and therefore making this 356 

study novel.  357 

In the current research, an integrative approach of the variables affecting the 358 

distribution of these bioaerosols was adopted, on a local or a regional scale, providing a 359 
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deeper comprehension of the dynamics of these fungal taxa. The survey revealed distinct 360 

relationships between spore concentrations and sites and years of sampling. The overall spore 361 

frequency and the annual sum of the daily concentrations of Cladosporium was higher than 362 

Alternaria’s, a finding also reported previously in different regions of the world. In Cartagena 363 

(Spain), Cladosporium represented 62.2% of the total spore count and Alternaria only 5.3%, 364 

however, Alternaria was still the second most abundant fungal type (Elvira-Rendueles et al., 365 

2013). Likewise, in Bursa (Turkey), Cladosporium represented 88.1% of the total spore count 366 

followed by Alternaria at 4.9% (Ataygul et al., 2007). A similar trend was found in 367 

Thessaloniki (Greece) by Gioulekas et al. (2004) and in Madrid (Spain) by Sabariego et al. 368 

(2007).  369 

 Two types of models, regression and classification, were built as a part of this study. 370 

The goal of the first one was to predict values of the fungal spore concentration in the studied 371 

sites, while the classification models were created to predict high levels of the fungal spore 372 

concentrations. Classification models were more accurate than regression models. This is due 373 

to a number of factors. Concentration values of Alternaria and Cladosporium were classified 374 

into two groups prior to the modelling. This procedure generalises the fungal spore values 375 

and, therefore, changes in values. As a result, it gives more general trends instead of showing 376 

the local trends and day-to-day differences. Moreover, the obtained values of concentration 377 

are an estimation of the whole population and are prone to random and systematic (bias) 378 

errors (Comtois et al., 1999; Oteros et al., 2013). The benefit of using a classification method 379 

is that it reduces the influence of methodological differences between sites, such as the 380 

relative position of samplers and the heights of buildings, or instrumental and human errors. 381 

The life cycles of many fungal pathogens are strongly determined by weather. The 382 

airborne spore concentrations are affected by biological factors (reproduction and survival), 383 

weather parameters, land use, resource availability and competition (Boddy et al., 2014). 384 
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Dispersal and circulation are highly influenced by wind and rainfall, while germination and 385 

infection rates are often dependent upon liquid water on the plant surface (sometimes high 386 

relative humidity) and species-specific optimal temperature ranges. In this study the most 387 

important meteorological variables were the same for both Alternaria and Cladosporium. This 388 

shows that despite the differences in the values of spore concentration, both taxa are mostly 389 

affected by the same meteorological factors, such as temperature (minimum, average, 390 

maximum and cumulated GDD) and vapour pressure, which determines the water content in 391 

the air (related to air humidity).  392 

In many aerobiological studies, temperature and relative humidity of the air are 393 

meteorological parameters that significantly influence concentrations of Cladosporium and 394 

Alternaria spores, with temperature being positively associated and relative humidity 395 

negatively associated (e.g. Grinn-Gofroń and Strzelczak 2009; O’Connor et al. 2014; Sadyś et 396 

al. 2016; Ianovici 2016; Almeida et al. 2018) 397 

Other variable - global radiation includes both the direct solar radiation and the diffuse 398 

radiation resulting from reflected or scattered sunlight, and can be considered as a function of 399 

temperature (Meza and Varas 2000). One of the solar radiation components, UVB radiation, 400 

is reported to affect the survival of airborne fungal spores during movement over long 401 

distances through the atmosphere (Al-Subai 2002). This predictor showed moderate 402 

importance in our models. 403 

 Rain has been often cited as being one of the most influential factors in reducing 404 

airborne pollen (e.g. Damialis et al., 2005). However, precipitation was identified as the least 405 

important factor in our models. There are two main reasons behind the small effect of 406 

precipitation on the fungal spore models. Firstly, variation of daily precipitation values does 407 

not closely correlate with the values and levels of Alternaria and Cladosporium 408 

concentrations, both of which are regarded as dry weather spores. For example, it is possible 409 
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to have a rainless day and a high fungal spore concentration (the middle of the season) and to 410 

have a rainless day without airborne fungal spores (off-season). Secondly, precipitation is 411 

characterized by high variability, which could not be captured in a daily timescale (sum of 412 

precipitation). To better understand the effects of rainfall on fungal spore diversity and 413 

abundance, and on circulation patterns, finer resolution data (hourly scale), with different 414 

statistical techniques (i.e. artificial intelligence models) would be required. 415 

5. Conclusions 416 

• Classification models were more accurate than regressions for Alternaria and 417 

Cladosporium fungal spores. 418 

• Regression models gave better results for individual sites compared to grouped sites, 419 

resulting potentially from strong effects from local meteorological conditions. 420 

• Classification models gave better results in grouped sites rather than for individual 421 

sites, thus, displaying the capacity for accurately providing larger scale predictions of 422 

fungal spore concentrations (compared to the more localized regression models). 423 

• Temperature (in the form of minimal, average, maximum temperature, and cumulated 424 

GDD) and vapour pressure were the most important variables in models of Alternaria 425 

and Cladosporium, while radiation and daily sum of precipitation had a smaller impact 426 

on the models. 427 

 428 
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Figure captions: 612 

 613 

Figure 1. Location of measurement points against the background of biogeographical 614 

conditions in Europe (according to Europaean Environmental Agency: www.eea.eu.int 615 

modified) 616 

 617 

Figure 2. Daily concentrations of airborne Alternaria spores by day of year for all of the 618 

analyzed sites on a logarithmic scale (log(1+x)). Black lines are cubic spline smoothers for 619 

each site, whereas colored lines represent the actual data. Variable coloration of Figures 620 

represents different timespan of data, with darker colors indicating lack of more recent spore 621 

data. 622 

 623 

Figure 3. Daily concentrations of airborne Cladosporium spores by day of year for all of the 624 

analyzed sites on a logarithmic scale (log(1+x)). Black lines are cubic spline smoothers for 625 

each site, whereas colored lines represent the actual data. Variable coloration of Figures 626 

represents different timespan of data, with darker colors indicating lack of more recent spore 627 

data. 628 

 629 

Figure 4. Variable importance of each input variable for Alternaria and Cladosporium - 630 

regression models (top) and classification models (bottom). The variables are showed by the 631 

mean value of variable importance for all of the taxa in descending order 632 
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