10 research outputs found

    Glucagon regulates hepatic lipid metabolism via cAMP and Insig-2 signaling: implication for the pathogenesis of hypertriglyceridemia and hepatic steatosis

    Get PDF
    Insulin induced gene-2 (Insig-2) is an ER-resident protein that inhibits the activation of sterol regulatory element-binding proteins (SREBPs). However, cellular factors that regulate Insig-2 expression have not yet been identified. Here we reported that cyclic AMP-responsive element-binding protein H (CREBH) positively regulates mRNA and protein expression of a liver specific isoform of Insig-2, Insig-2a, which in turn hinders SREBP-1c activation and inhibits hepatic de novo lipogenesis. CREBH binds to the evolutionally conserved CRE-BP binding elements located in the enhancer region of Insig-2a and upregulates its mRNA and protein expression. Metabolic hormone glucagon and nutritional fasting activated CREBH, which upregulated expression of Insig-2a in hepatocytes and inhibited SREBP-1c activation. In contrast, genetic depletion of CREBH decreased Insig-2a expression, leading to the activation of SREBP-1c and its downstream lipogenic target enzymes. Compromising CREBH-Insig-2 signaling by siRNA interference against Insig-2 also disrupted the inhibitory effect of this signaling pathway on hepatic de novo triglyceride synthesis. These actions resulted in the accumulation of lipid droplets in hepatocytes and systemic hyperlipidemia. Our study identified CREBH as the first cellular protein that regulates Insig-2a expression. Glucagon activated the CREBH-Insig-2a signaling pathway to inhibit hepatic de novo lipogenesis and prevent the onset of hepatic steatosis and hypertriglyceridemia

    Genome-Wide Gene Expression in relation to Age in Large Laboratory Cohorts of \u3ci\u3eDrosophila melanogaster\u3c/i\u3e

    Get PDF
    Aging is a complex process characterized by a steady decline in an organism’s ability to perform life-sustaining tasks. In the present study, two cages of approximately 12,000 mated Drosophila melanogaster females were used as a source of RNA from individuals sampled frequently as a function of age. A linear model for micro array data method was used for the micro array analysis to adjust for the box effect; it identified 1,581 candidate aging genes.Cluster analyses using a self-organizing map algorithm on the 1,581 significant genes identified gene expression patterns across different ages. Genes involved in immune system function and regulation, chorion assembly and function, and metabolism were all significantly differentially expressed as a function of age. The temporal pattern of data indicated that gene expression related to aging is affected relatively early in life span. In addition, the temporal variance in gene expression in immune function genes was compared to a random set of genes. There was an increase in the variance of gene expression within each cohort, which was not observed in the set of random genes.This observation is compatible with the hypothesis that D. melanogaster immune function genes lose control of gene expression as flies age

    Activation of Toll-like Receptor 4 (TLR4) Attenuates Adaptive Thermogenesis via Endoplasmic Reticulum Stress

    Get PDF
    Background: Human obesity is associated with defective brown adipose tissue (BAT) activation. Results: Toll-like receptor 4(TLR4) activation by high fat diet or lipopolysaccharide impairs adaptive thermogenesis. Conclusion: Obesity-mediated TLR4 activation represses adaptive thermogenesis through endoplasmic reticulum (ER) stress-mediated mitochondrial dysfunction. Significance: Inhibition of TLR4/ER stress axis is a novel target to augment BAT activity. Abstract: Adaptive thermogenesis is the cellular process transforming chemical energy into heat in response to cold. A decrease in adaptive thermogenesis is a contributing factor to obesity. However, the molecular mechanisms responsible for the compromised adaptive thermogenesis in obese subjects have not yet been elucidated. In this study we hypothesized that Toll-like receptor 4 (TLR4) activation and subsequent inflammatory responses are key regulators to suppress adaptive thermogenesis. To test this hypothesis, C57BL/6 mice were either fed a palmitate-enriched high fat diet or administered with chronic low-dose LPS before cold acclimation. TLR4 stimulation by a high fat diet or LPS were both associated with reduced core body temperature and heat release. Impairment of thermogenic activation was correlated with diminished expression of brown-specific markers and mitochondrial dysfunction in subcutaneous white adipose tissue (sWAT). Defective sWAT browning was concomitant with elevated levels of endoplasmic reticulum (ER) stress and autophagy. Consistently, TLR4 activation by LPS abolished cAMP-induced upregulation of uncoupling protein 1 (UCP1) in primary human adipocytes, which was reversed by silencing of C/EBP homologous protein (CHOP). Moreover, the inactivation of ER stress by genetic deletion of CHOP or chemical chaperone conferred a resistance to the LPSinduced suppression of adaptive thermogenesis. Collectively, our data indicate the existence of a novel signaling network that links TLR4 activation, ER stress, and mitochondrial dysfunction, thereby antagonizing thermogenic activation of sWAT. Our results also suggest that TLR4/ER stress axis activation may be a responsible mechanism for obesity-mediated defective brown adipose tissue activatio

    Genome-Wide Gene Expression in relation to Age in Large Laboratory Cohorts of \u3ci\u3eDrosophila melanogaster\u3c/i\u3e

    Get PDF
    Aging is a complex process characterized by a steady decline in an organism’s ability to perform life-sustaining tasks. In the present study, two cages of approximately 12,000 mated Drosophila melanogaster females were used as a source of RNA from individuals sampled frequently as a function of age. A linear model for micro array data method was used for the micro array analysis to adjust for the box effect; it identified 1,581 candidate aging genes.Cluster analyses using a self-organizing map algorithm on the 1,581 significant genes identified gene expression patterns across different ages. Genes involved in immune system function and regulation, chorion assembly and function, and metabolism were all significantly differentially expressed as a function of age. The temporal pattern of data indicated that gene expression related to aging is affected relatively early in life span. In addition, the temporal variance in gene expression in immune function genes was compared to a random set of genes. There was an increase in the variance of gene expression within each cohort, which was not observed in the set of random genes.This observation is compatible with the hypothesis that D. melanogaster immune function genes lose control of gene expression as flies age

    Glucagon regulates hepatic lipid metabolism via cAMP and Insig-2 signaling: implication for the pathogenesis of hypertriglyceridemia and hepatic steatosis

    Get PDF
    Insulin induced gene-2 (Insig-2) is an ER-resident protein that inhibits the activation of sterol regulatory element-binding proteins (SREBPs). However, cellular factors that regulate Insig-2 expression have not yet been identified. Here we reported that cyclic AMP-responsive element-binding protein H (CREBH) positively regulates mRNA and protein expression of a liver specific isoform of Insig-2, Insig-2a, which in turn hinders SREBP-1c activation and inhibits hepatic de novo lipogenesis. CREBH binds to the evolutionally conserved CRE-BP binding elements located in the enhancer region of Insig-2a and upregulates its mRNA and protein expression. Metabolic hormone glucagon and nutritional fasting activated CREBH, which upregulated expression of Insig-2a in hepatocytes and inhibited SREBP-1c activation. In contrast, genetic depletion of CREBH decreased Insig-2a expression, leading to the activation of SREBP-1c and its downstream lipogenic target enzymes. Compromising CREBH-Insig-2 signaling by siRNA interference against Insig-2 also disrupted the inhibitory effect of this signaling pathway on hepatic de novo triglyceride synthesis. These actions resulted in the accumulation of lipid droplets in hepatocytes and systemic hyperlipidemia. Our study identified CREBH as the first cellular protein that regulates Insig-2a expression. Glucagon activated the CREBH-Insig-2a signaling pathway to inhibit hepatic de novo lipogenesis and prevent the onset of hepatic steatosis and hypertriglyceridemia
    corecore