5 research outputs found

    Videofluoroscopic evaluation of mastication and swallowing in individuals with TMD

    Get PDF
    To study mastication and swallowing disorders in patients with temporomanclibular disorders (TMD). Objective: To investigate mastication and swallowing disorders in patients with severe TMD referred to surgery. Materials and Methods: Clinical and experimental study involving ten individuals with TMD submitted to deglutition videofluoroscopy. These patients did not have posterior teeth, mastication pain and food replacement in favor of pasty consistence food. The assessment of the oral and pharyngeal phases approached the following aspects: side of onset and preferential side for chewing, premature escape, remains of food residues in the oral cavity or in the pharyngeal recesses, number of necessary swallowing efforts, laryngeal penetration and/or tracheal aspiration. Results: During mastication and the oral phase we observed tongue compensatory movements upon chewing (n = 7; 70%), premature escape (n = 4; 40%), food remains in the cavity after swallowing (n = 5; 50%) and an excessive number of deglutition efforts (n = 5; 50%). On the pharyngeal phase we observed food remains in the valleculae (n = 6; 60%), in the pyriform sinuses (n = 4; 40%); laryngeal penetration (n = 1; 10%) and tracheal aspiration (n = 4; 40%). Conclusion: TMD patients may have alterations in their chewing and swallowing patterns, with laryngeal penetration and/or tracheal aspiration. The study indicates the need for a multidisciplinary assessment because of dysphagia in TMD patients

    Mucosally Delivered Salmonella Live Vector Vaccines Elicit Potent Immune Responses against a Foreign Antigen in Neonatal Mice Born to Naive and Immune Mothers

    No full text
    The development of effective vaccines for neonates and very young infants has been impaired by their weak, short-lived, and Th-2 biased responses and by maternal antibodies that interfere with vaccine take. We investigated the ability of Salmonella enterica serovars Typhi and Typhimurium to mucosally deliver tetanus toxin fragment C (Frag C) as a model antigen in neonatal mice. We hypothesize that Salmonella, by stimulating innate immunity (contributing to adjuvant effects) and inducing Th-1 cytokines, can enhance neonatal dendritic cell maturation and T-cell activation and thereby prime humoral and cell-mediated immunity. We demonstrate for the first time that intranasal immunization of newborn mice with 10(9) CFU of S. enterica serovar Typhi CVD 908-htrA and S. enterica serovar Typhimurium SL3261 carrying plasmid pTETlpp on days 7 and 22 after birth elicits high titers of Frag C antibodies, previously found to protect against tetanus toxin challenge and similar to those observed in adult mice. Salmonella live vectors colonized and persisted primarily in nasal tissue. Mice vaccinated as neonates induced Frag C-specific mucosal and systemic immunoglobulin A (IgA)- and IgG-secreting cells, T-cell proliferative responses, and gamma interferon secretion. A mixed Th1- and Th2-type response to Frag C was established 1 week after the boost and was maintained thereafter. S. enterica serovar Typhi carrying pTETlpp induced Frag C-specific antibodies and cell-mediated immunity in the presence of high levels of maternal antibodies. This is the first report that demonstrates the effectiveness of Salmonella live vector vaccines in early life
    corecore